A Study on the Entire Take-Over Process-Based Emergency Obstacle Avoidance Behavior
Yi Li,
Zhaoze Xuan and
Xianyu Li ()
Additional contact information
Yi Li: Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China
Zhaoze Xuan: Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China
Xianyu Li: Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
IJERPH, 2023, vol. 20, issue 4, 1-16
Abstract:
Nowadays, conditional automated driving vehicles still need drivers to take-over in the scenarios such as emergency hazard events or driving environments beyond the system’s control. This study aimed to explore the changing trend of the drivers’ takeover behavior under the influence of traffic density and take-over budget time for the entire take-over process in emergency obstacle avoidance scenarios. In the driving simulator, a 2 × 2 factorial design was adopted, including two traffic densities (high density and low density) and two kinds of take-over budget time (3 s and 5 s). A total of 40 drivers were recruited, and each driver was required to complete four simulation experiments. The driver’s take-over process was divided into three phases, including the reaction phase, control phase, and recovery phase. Time parameters, dynamics parameters, and operation parameters were collected for each take-over phase in different obstacle avoidance scenarios. This study analyzed the variability of traffic density and take-over budget time with take-over time, lateral behavior, and longitudinal behavior. The results showed that in the reaction phase, the driver’s reaction time became shorter as the scenario urgency increased. In the control phase, the steering wheel reversal rate, lateral deviation rate, braking rate, average speed, and takeover time were significantly different at different urgency levels. In the recovery phase, the average speed, accelerating rate, and take-over time differed significantly at different urgency levels. For the entire take-over process, the entire take-over time increased with the increase in urgency. The lateral take-over behavior tended to be aggressive first and then became defensive, and the longitudinal take-over behavior was defensive with the increase in urgency. The findings will provide theoretical and methodological support for the improvement of take-over behavior assistance in emergency take-over scenarios. It will also be helpful to optimize the human-machine interaction system.
Keywords: automated driving; take-over behavior; take-over process; scenario urgency (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/4/3069/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/4/3069/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:4:p:3069-:d:1063412
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().