EconPapers    
Economics at your fingertips  
 

Causal Model Building in the Context of Cardiac Rehabilitation: A Systematic Review

Nilufar Akbari, Georg Heinze, Geraldine Rauch, Ben Sander, Heiko Becher and Daniela Dunkler
Additional contact information
Nilufar Akbari: Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
Georg Heinze: Center for Medical Data Science, Institute of Clinical Biometrics, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
Geraldine Rauch: Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
Ben Sander: Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
Heiko Becher: Institute of Global Health, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
Daniela Dunkler: Center for Medical Data Science, Institute of Clinical Biometrics, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria

IJERPH, 2023, vol. 20, issue 4, 1-13

Abstract: Randomization is an effective design option to prevent bias from confounding in the evaluation of the causal effect of interventions on outcomes. However, in some cases, randomization is not possible, making subsequent adjustment for confounders essential to obtain valid results. Several methods exist to adjust for confounding, with multivariable modeling being among the most widely used. The main challenge is to determine which variables should be included in the causal model and to specify appropriate functional relations for continuous variables in the model. While the statistical literature gives a variety of recommendations on how to build multivariable regression models in practice, this guidance is often unknown to applied researchers. We set out to investigate the current practice of explanatory regression modeling to control confounding in the field of cardiac rehabilitation, for which mainly non-randomized observational studies are available. In particular, we conducted a systematic methods review to identify and compare statistical methodology with respect to statistical model building in the context of the existing recent systematic review CROS-II, which evaluated the prognostic effect of cardiac rehabilitation. CROS-II identified 28 observational studies, which were published between 2004 and 2018. Our methods review revealed that 24 (86%) of the included studies used methods to adjust for confounding. Of these, 11 (46%) mentioned how the variables were selected and two studies (8%) considered functional forms for continuous variables. The use of background knowledge for variable selection was barely reported and data-driven variable selection methods were applied frequently. We conclude that in the majority of studies, the methods used to develop models to investigate the effect of cardiac rehabilitation on outcomes do not meet common criteria for appropriate statistical model building and that reporting often lacks precision.

Keywords: causal regression modeling; variable selection; functional forms; cardiac rehabilitation (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/4/3182/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/4/3182/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:4:p:3182-:d:1065381

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3182-:d:1065381