EconPapers    
Economics at your fingertips  
 

A Novel Bioinspired Algorithm for Mixed and Incomplete Breast Cancer Data Classification

David González-Patiño, Yenny Villuendas-Rey (), Magdalena Saldaña-Pérez and Amadeo-José Argüelles-Cruz ()
Additional contact information
David González-Patiño: Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
Yenny Villuendas-Rey: Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Ciudad de México 07700, Mexico
Magdalena Saldaña-Pérez: Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
Amadeo-José Argüelles-Cruz: Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico

IJERPH, 2023, vol. 20, issue 4, 1-13

Abstract: The pre-diagnosis of cancer has been approached from various perspectives, so it is imperative to continue improving classification algorithms to achieve early diagnosis of the disease and improve patient survival. In the medical field, there are data that, for various reasons, are lost. There are also datasets that mix numerical and categorical values. Very few algorithms classify datasets with such characteristics. Therefore, this study proposes the modification of an existing algorithm for the classification of cancer. The said algorithm showed excellent results compared with classical classification algorithms. The AISAC-MMD (Mixed and Missing Data) is based on the AISAC and was modified to work with datasets with missing and mixed values. It showed significantly better performance than bio-inspired or classical classification algorithms. Statistical analysis established that the AISAC-MMD significantly outperformed the Nearest Neighbor, C4.5, Naïve Bayes, ALVOT, Naïve Associative Classifier, AIRS1, Immunos1, and CLONALG algorithms in conducting breast cancer classification.

Keywords: breast cancer; bio-inspired algorithms; machine learning; artificial intelligence (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/4/3240/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/4/3240/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:4:p:3240-:d:1066410

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3240-:d:1066410