EconPapers    
Economics at your fingertips  
 

Tackling Neonatal Sepsis—Can It Be Predicted?

Špela But, Brigita Celar and Petja Fister ()
Additional contact information
Špela But: Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
Brigita Celar: Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
Petja Fister: Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia

IJERPH, 2023, vol. 20, issue 4, 1-13

Abstract: (1) Background: Early signs of sepsis in a neonate are often subtle and non-specific, the clinical course rapid and fulminant. The aim of our research was to analyse diagnostic markers for neonatal sepsis and build an application which could calculate its probability. (2) Methods: A retrospective clinical study was conducted on 497 neonates treated at the Clinical Department of Neonatology of the University Children’s Hospital in Ljubljana from 2007 to 2021. The neonates with a diagnosis of sepsis were separated based on their blood cultures, clinical and laboratory markers. The influence of perinatal factors was also observed. We trained several machine-learning models for prognosticating neonatal sepsis and used the best-performing model in our application. (3) Results: Thirteen features showed highest diagnostic importance: serum concentrations of C-reactive protein and procalcitonin, age of onset, immature neutrophil and lymphocyte percentages, leukocyte and thrombocyte counts, birth weight, gestational age, 5-min Apgar score, gender, toxic changes in neutrophils, and childbirth delivery. The created online application predicts the probability of sepsis by combining the data values of these features. (4) Conclusions: Our application combines thirteen most significant features for neonatal sepsis development and predicts the probability of sepsis in a neonate.

Keywords: neonate; sepsis; infection; diagnostic markers of infection; C-reactive protein; procalcitonin; prediction of sepsis; application for predicting neonatal sepsis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/4/3644/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/4/3644/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:4:p:3644-:d:1072896

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3644-:d:1072896