Facet Dependence of Biosynthesis of Vivianite from Iron Oxides by Geobacter sulfurreducens
Xiaoshan Luo,
Liumei Wen,
Lihua Zhou () and
Yong Yuan
Additional contact information
Xiaoshan Luo: Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
Liumei Wen: Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
Lihua Zhou: Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
Yong Yuan: Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
IJERPH, 2023, vol. 20, issue 5, 1-12
Abstract:
Vivianite plays an important role in alleviating the phosphorus crisis and phosphorus pollution. The dissimilatory iron reduction has been found to trigger the biosynthesis of vivianite in soil environments, but the mechanism behind this remains largely unexplored. Herein, by regulating the crystal surfaces of iron oxides, we explored the influence of different crystal surface structures on the synthesis of vivianite driven by microbial dissimilatory iron reduction. The results showed that different crystal faces significantly affect the reduction and dissolution of iron oxides by microorganisms and the subsequent formation of vivianite. In general, goethite is more easily reduced by Geobacter sulfurreducens than hematite. Compared with Hem_{100} and Goe_L{110}, Hem_{001} and Goe_H{110} have higher initial reduction rates (approximately 2.25 and 1.5 times, respectively) and final Fe(II) content (approximately 1.56 and 1.20 times, respectively). In addition, in the presence of sufficient PO 4 3− , Fe(II) combined to produce phosphorus crystal products. The final phosphorus recoveries of Hem_{001} and Goe_H{110} systems were about 5.2 and 13.6%, which were 1.3 and 1.6 times of those of Hem_{100} and Goe_L{110}, respectively. Material characterization analyses indicated that these phosphorous crystal products are vivianite and that different iron oxide crystal surfaces significantly affected the size of the vivianite crystals. This study demonstrates that different crystal faces can affect the biological reduction dissolution of iron oxides and the secondary biological mineralization process driven by dissimilatory iron reduction.
Keywords: iron oxide; exposed facet; dissimilated iron reduction; vivianite (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/5/4247/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/5/4247/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:5:p:4247-:d:1082307
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().