EconPapers    
Economics at your fingertips  
 

Application of Parameter Optimization Methods Based on Kalman Formula to the Soil—Crop System Model

Qinghua Guo and Wenliang Wu ()
Additional contact information
Qinghua Guo: Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Wenliang Wu: Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

IJERPH, 2023, vol. 20, issue 5, 1-16

Abstract: Soil–crop system models are effective tools for optimizing water and nitrogen application schemes, saving resources and protecting the environment. To guarantee model prediction accuracy, we must apply parameter optimization methods for model calibration. The performance of two different parameter optimization methods based on the Kalman formula are evaluated for a parameter identification of the soil Water Heat Carbon Nitrogen Simulator (WHCNS) model using mean bias error (ME), root-mean-square error (RMSE) and an index of agreement (IA). One is the iterative local updating ensemble smoother (ILUES), and the other is the DiffeRential Evolution Adaptive Metropolis with Kalman-inspired proposal distribution (DREAMkzs). Our main results are as follows: (1) Both ILUES and DREAMkzs algorithms performed well in model parameter calibration with the RMSE_Maximum a posteriori (RMSE_MAP) values were 0.0255 and 0.0253, respectively; (2) ILUES significantly accelerated the process to the reference values in the artificial case, while outperforming in the calibration of multimodal parameter distribution in the practical case; and (3) the DREAMkzs algorithm considerably accelerated the burn-in process compared with the original algorithm without Kalman-formula-based sampling for parameter optimization of the WHCNS model. In conclusion, ILUES and DREAMkzs can be applied to a parameter identification of the WHCNS model for more accurate prediction results and faster simulation efficiency, contributing to the popularization of the model.

Keywords: data assimilation; Bayesian calibration; WHCNS; parameter multimodal distribution; sampling efficiency (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/5/4567/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/5/4567/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:5:p:4567-:d:1087693

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4567-:d:1087693