EconPapers    
Economics at your fingertips  
 

Aligning Federated Learning with Existing Trust Structures in Health Care Systems

Imrana Yari Abdullahi (), René Raab, Arne Küderle and Björn Eskofier
Additional contact information
Imrana Yari Abdullahi: Machine Learning and Data Analytics (MaD) Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
René Raab: Machine Learning and Data Analytics (MaD) Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
Arne Küderle: Machine Learning and Data Analytics (MaD) Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
Björn Eskofier: Machine Learning and Data Analytics (MaD) Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany

IJERPH, 2023, vol. 20, issue 7, 1-16

Abstract: Patient-centered health care information systems (PHSs) on peer-to-peer (P2P) networks (e.g., decentralized personal health records) enable storing data locally at the edge to enhance data sovereignty and resilience to single points of failure. Nonetheless, these systems raise concerns on trust and adoption in medical workflow due to non-alignment to current health care processes and stakeholders’ needs. The distributed nature of the data makes it more challenging to train and deploy machine learning models (using traditional methods) at the edge, for instance, for disease prediction. Federated learning (FL) has been proposed as a possible solution to these limitations. However, the P2P PHS architecture challenges current FL solutions because they use centralized engines (or random entities that could pose privacy concerns) for model update aggregation. Consequently, we propose a novel conceptual FL framework, CareNetFL, that is suitable for P2P PHS multi-tier and hybrid architecture and leverages existing trust structures in health care systems to ensure scalability, trust, and security. Entrusted parties (practitioners’ nodes) are used in CareNetFL to aggregate local model updates in the network hierarchy for their patients instead of random entities that could actively become malicious. Involving practitioners in their patients’ FL model training increases trust and eases access to medical data. The proposed concepts mitigate communication latency and improve FL performance through patient–practitioner clustering, reducing skewed and imbalanced data distributions and system heterogeneity challenges of FL at the edge. The framework also ensures end-to-end security and accountability through leveraging identity-based systems and privacy-preserving techniques that only guarantee security during training.

Keywords: federated machine learning; health care system; patient-centered health; mobile health; COVID-19 proximity tracker; edge computing; peer-to-peer; security; privacy (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/7/5378/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/7/5378/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:7:p:5378-:d:1114944

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5378-:d:1114944