EconPapers    
Economics at your fingertips  
 

Diagnosis in Bytes: Comparing the Diagnostic Accuracy of Google and ChatGPT 3.5 as an Educational Support Tool

Guilherme R. Guimaraes, Ricardo G. Figueiredo (), Caroline Santos Silva, Vanessa Arata, Jean Carlos Z. Contreras, Cristiano M. Gomes, Ricardo B. Tiraboschi and José Bessa Junior
Additional contact information
Guilherme R. Guimaraes: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil
Ricardo G. Figueiredo: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil
Caroline Santos Silva: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil
Vanessa Arata: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil
Jean Carlos Z. Contreras: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil
Cristiano M. Gomes: Faculty of Medicine, Universidade de São Paulo (USP), São Paulo 01.246-904, Brazil
Ricardo B. Tiraboschi: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil
José Bessa Junior: Programa de Pós-Graduação em Saúde Coletiva, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana 44.036-900, Brazil

IJERPH, 2024, vol. 21, issue 5, 1-11

Abstract: Background: Adopting advanced digital technologies as diagnostic support tools in healthcare is an unquestionable trend accelerated by the COVID-19 pandemic. However, their accuracy in suggesting diagnoses remains controversial and needs to be explored. We aimed to evaluate and compare the diagnostic accuracy of two free accessible internet search tools: Google and ChatGPT 3.5. Methods: To assess the effectiveness of both medical platforms, we conducted evaluations using a sample of 60 clinical cases related to urological pathologies. We organized the urological cases into two distinct categories for our analysis: (i) prevalent conditions, which were compiled using the most common symptoms, as outlined by EAU and UpToDate guidelines, and (ii) unusual disorders, identified through case reports published in the ‘Urology Case Reports’ journal from 2022 to 2023. The outcomes were meticulously classified into three categories to determine the accuracy of each platform: “correct diagnosis”, “likely differential diagnosis”, and “incorrect diagnosis”. A group of experts evaluated the responses blindly and randomly. Results: For commonly encountered urological conditions, Google’s accuracy was 53.3%, with an additional 23.3% of its results falling within a plausible range of differential diagnoses, and the remaining outcomes were incorrect. ChatGPT 3.5 outperformed Google with an accuracy of 86.6%, provided a likely differential diagnosis in 13.3% of cases, and made no unsuitable diagnosis. In evaluating unusual disorders, Google failed to deliver any correct diagnoses but proposed a likely differential diagnosis in 20% of cases. ChatGPT 3.5 identified the proper diagnosis in 16.6% of rare cases and offered a reasonable differential diagnosis in half of the cases. Conclusion: ChatGPT 3.5 demonstrated higher diagnostic accuracy than Google in both contexts. The platform showed satisfactory accuracy when diagnosing common cases, yet its performance in identifying rare conditions remains limited.

Keywords: medical education; medical informatics applications; artificial intelligence; diagnosis; urology (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/21/5/580/pdf (application/pdf)
https://www.mdpi.com/1660-4601/21/5/580/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:21:y:2024:i:5:p:580-:d:1387485

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:21:y:2024:i:5:p:580-:d:1387485