Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG 2 ) Cells
Dwayne J. Sutton and
Paul B. Tchounwou
Additional contact information
Dwayne J. Sutton: Molecular Toxicology Research laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540 Jackson, Mississippi 39217, USA
Paul B. Tchounwou: Molecular Toxicology Research laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540 Jackson, Mississippi 39217, USA
IJERPH, 2006, vol. 3, issue 1, 1-5
Abstract:
Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG 2 ) cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG 2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 ?g/mL based on previous cytotoxicity results in our laboratory indicating an LD 50 of 3.5 ± 0.6 ?g/mL for mercury in HepG 2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG 2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 ?g/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0.05%, 23.32 ± 0.03%, and 34.51 ± 0.01% for 0, 1, 2, and 3 ?g/mL of mercury respectively, also indicating a gradual increase in Caspase positive cells with increasing doses of mercury.
Keywords: Mercury; Apoptosis; Flow cytometry; HepG2 cells; Caspase 3; Annexin V (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/3/1/38/pdf (application/pdf)
https://www.mdpi.com/1660-4601/3/1/38/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:3:y:2006:i:1:p:38-42:d:2370
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().