Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
Venera Cardile,
Laura Lombardo,
Elena Belluso,
Annamaria Panico,
Marcella Renis,
Antonio Gianfagna and
Michael Balazy
Additional contact information
Venera Cardile: Department of Physiological Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
Laura Lombardo: Department of Physiological Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
Elena Belluso: Department of Mineralogical and Petrological Sciences, University of Turin, Turin, Italy, CNR IGG-Sezione I Torino, Italy
Annamaria Panico: Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
Marcella Renis: Department Biological Chemistry, Clinical Biochemistry and Molecular Biology, University of Catania, Italy
Antonio Gianfagna: Department of Earth Sciences, University “La Sapienza”, Rome, Italy
Michael Balazy: Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
IJERPH, 2007, vol. 4, issue 3, 1-8
Abstract:
Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cellular response and defense following exposure to these microscopic fibers have not been characterized. We continue to study these mechanisms to be able to propose preventive strategies in large populations. The objective of the present study was to determine comparatively biological responses of mesothelial Met-5A and monocyte-macrophage J774 cells following exposure to two types of fluoro-edenite fibers having low and high iron content (labeled 19 and 27, respectively) obtained from Biancavilla (Sicily, Italy). The reference fiber was a non-iron fibrous tremolite from Val di Susa (Piemonte, Italy). The cells were treated with 5, 50, and 100 ?g of fibrous matter per 1 ml for 72 hr. We identified several key mechanisms by which cells responded and counteracted the injury induced by these fibers. The fibers caused induction of the heat shock protein 70 (Hsp70), stimulated formation of reactive oxygen species (detected by using DCFH-DA as a fluorescent probe) and NO • (measured as nitrite). Exposure of cells to the fibers induced lactate dehydrogenase activity and decreased viability. The fluoro-endenite type 27 was the most potent fiber tested, which indicated that iron and possibly manganese contribute significantly to this fiber toxicity. The J774 cells were more sensitive to fluoro-edenite than Met-5A cells suggesting that the primary site of the fiberinduced inflammatory response could be the macrophage rather than the pulmonary epithelium. Fluoro-edenite produces more biological alterations with respect to non-iron tremolite. Hsp70 and free radicals could be important factors in the context of mineral fiber-induced acute lung injury leading possibly to mutagenic effects. We anticipate that pharmacological blockade of the fiber-dependent cellular responses could in long term offer preventive approach to combat lung diseases induced by these fibers.
Keywords: asbestos-like fibers; cell cultures; Hsp70; lung disease; oxidative stress; stress protein (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/4/3/195/pdf (application/pdf)
https://www.mdpi.com/1660-4601/4/3/195/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:4:y:2007:i:3:p:195-202:d:2343
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().