Economics at your fingertips  

Predicting Extreme Daily Regime Shifts in Financial Time Series Exchange/Johannesburg Stock Exchange—All Share Index

Katleho Makatjane and Ntebogang Moroke
Additional contact information
Katleho Makatjane: Faculty of Economic and Management Sciences, Department of Statistics and Operations Research, North-West University, Mmabatho 2745, South Africa
Ntebogang Moroke: Faculty of Economic and Management Sciences, Department of Statistics and Operations Research, North-West University, Mmabatho 2745, South Africa

IJFS, 2021, vol. 9, issue 2, 1-18

Abstract: During the past decades, seasonal autoregressive integrated moving average (SARIMA) had become one of a prevalent linear models in time series and forecasting. Empirical research advocated that forecasting with non-linear models can be an encouraging alternative to traditional linear models. Linear models are often compared to non-linear models with mixed conclusions in terms of superiority in forecasting performance. Therefore, the aim of this study is to build an early warning system (EWS) model for extreme daily losses for financial stock markets. A logistic model tree (LMT) is used in collaboration with a seasonal autoregressive integrated moving average-Markov-Switching exponential generalised autoregressive conditional heteroscedasticity-generalised extreme value distribution (SARIMA-MS-EGARCH-GEVD) estimates. A time series of the study is a five-day financial time series exchange/Johannesburg stock exchange-all share index (FTSE/JSE-ALSI) for the period of 4 January 2010 to 31 July 2020. The study is set into a two-stage framework. Firstly, SARIMA model is fitted to stock returns in order to obtain independently and identically distributed (i.i.d) residuals and fit the MS(k)-EGARCH(p,q)-GEVD to i.i.d residuals; while, in the second stage, we set-up an EWS model. The results of the estimated MS(2)-EGARCH(1,1) -GEVD revealed that the conditional distribution of returns is highly volatile giving the expected duration to approximately 36 months and 4 days in regime one and 58 months and 2 days in regime two. We further found that any degree losses above 25% implies that there will be no further losses. Using the seven statistical loss functions, the estimated S A R I M A ( 2 , 1 , 0 ) × ( 2 , 1 , 0 ) 240 − M S ( 2 ) − E G A R C H ( 1 , 1 ) − G E V D proved to be the most appropriate model for predicting extreme regimes losses as it was ranked at 71%. Finally, the results of EWS model exhibit reasonably an overall performance of 98%, sensitivity of 79.89% and specificity of 98.40% respectively. The model further indicated a success classification rate of 89% and a prediction rate of 95%. This is a promising technique for EWS. The findings also confirmed 63% and 51% of extreme losses for both training sample and validation sample to be correctly classified. The findings of this study are useful for decision makers and financial sector for future use and planning. Furthermore, a base for future researchers for conducting studies on emerging markets, have been contributed. These results are also important to risk managers and and investors.

Keywords: Bayesian; block minima; extreme value theory; generalised extreme value distribution; Markov-Chain-Monte-Carlo; Markov-Switching models (search for similar items in EconPapers)
JEL-codes: F2 F3 F41 F42 G1 G2 G3 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

IJFS is currently edited by Ms. Eleven Wei

More articles in IJFS from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

Page updated 2023-05-27
Handle: RePEc:gam:jijfss:v:9:y:2021:i:2:p:18-:d:523945