A Hypothesis on How the Azolla Symbiosis Mitigates Nitrous Oxide Based on In Silico Analyses
Dilantha Gunawardana and
Venura Herath
Additional contact information
Dilantha Gunawardana: Research Council, University of Sri Jayewardenepura, Gangodawila, Colombo 10250, Sri Lanka
Venura Herath: Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Kandy 20400, Sri Lanka
J, 2022, vol. 5, issue 1, 1-20
Abstract:
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous oxide production from urea and other supplements to the irrigated ecosystem, which mandates exploration since there is still no clear solution to nitrous oxide in paddy fields or in other ecosystems. Here, we propose a solution based on the evolution of a single cytochrome oxidase subunit II protein (WP_013192178.1) from the cyanobiont Trichormus azollae that we hypothesize to be able to quench nitrous oxide. First, we draw attention to a domain in the candidate protein that is emerging as a sensory periplasmic Y_Y_Y domain that is inferred to bind nitrous oxide. Secondly, we draw the phylogeny of the candidate protein showcasing the poor bootstrap support of its position in the wider clade showcasing its deviation from the core function. Thirdly, we show that the NtcA protein, the apical N-effecting transcription factor, can putatively bind to a promoter sequence of the gene coding for the candidate protein (WP_013192178.1), suggesting a function associated with heterocysts and N-metabolism. Our fourth point involves a string of histidines at the C-terminal extremity of the WP_013192178.1 protein that is missing on all other T. azollae cytochrome oxidase subunit II counterparts, suggesting that such histidines are perhaps involved in forming a Cu center. As the fifth point, we showcase a unique glycine-183 in a lengthy linker region containing multiple glycines that is absent in all proximal Nostocales cyanobacteria, which we predict to be a DNA binding residue. We propose a mechanism of action for the WP_013192178.1 protein based on our in silico analyses. In total, we hypothesize the incomplete and rapid conversion of a likely heterocystous cytochrome oxidase subunit II protein to an emerging nitrous oxide sensing/quenching subunit based on bioinformatics analyses and past literature, which can have repercussions to climate change and consequently, future human life.
Keywords: nitrous oxide; nitric oxide; cytochrome oxidase subunit II; urea; nitrous oxide reductase; Y_Y_Y domain; heterocysts (search for similar items in EconPapers)
JEL-codes: I1 I10 I12 I13 I14 I18 I19 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-8800/5/1/13/pdf (application/pdf)
https://www.mdpi.com/2571-8800/5/1/13/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjopen:v:5:y:2022:i:1:p:13-185:d:764086
Access Statistics for this article
J is currently edited by Ms. Angelia Su
More articles in J from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().