EconPapers    
Economics at your fingertips  
 

The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones

Gabriel J. Williams ()
Additional contact information
Gabriel J. Williams: Department of Applied Physics, The Citadel—Military College of South Carolina, Charleston, SC 29409, USA

J, 2025, vol. 8, issue 3, 1-35

Abstract: Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment.

Keywords: boundary layer; tropical cyclones; atmospheric thermodynamics; atmospheric dynamics; tropical cyclone structure; tropical cyclone dynamics (search for similar items in EconPapers)
JEL-codes: I1 I10 I12 I13 I14 I18 I19 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-8800/8/3/31/pdf (application/pdf)
https://www.mdpi.com/2571-8800/8/3/31/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jjopen:v:8:y:2025:i:3:p:31-:d:1736066

Access Statistics for this article

J is currently edited by Ms. Angelia Su

More articles in J from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jjopen:v:8:y:2025:i:3:p:31-:d:1736066