Capital Structure Arbitrage under a Risk-Neutral Calibration
Peter J. Zeitsch
Additional contact information
Peter J. Zeitsch: Calypso Technology Inc., San Francisco, CA 94105, USA
JRFM, 2017, vol. 10, issue 1, 1-23
Abstract:
By reinterpreting the calibration of structural models, a reassessment of the importance of the input variables is undertaken. The analysis shows that volatility is the key parameter to any calibration exercise, by several orders of magnitude. To maximize the sensitivity to volatility, a simple formulation of Merton’s model is proposed that employs deep out-of-the-money option implied volatilities. The methodology also eliminates the use of historic data to specify the default barrier, thereby leading to a full risk-neutral calibration. Subsequently, a new technique for identifying and hedging capital structure arbitrage opportunities is illustrated. The approach seeks to hedge the volatility risk, or vega, as opposed to the exposure from the underlying equity itself, or delta. The results question the efficacy of the common arbitrage strategy of only executing the delta hedge.
Keywords: Merton model; structural model; Credit Default Swap; capital structure arbitrage; algorithmic trading (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1911-8074/10/1/3/pdf (application/pdf)
https://www.mdpi.com/1911-8074/10/1/3/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:10:y:2017:i:1:p:3-:d:88258
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().