EconPapers    
Economics at your fingertips  
 

Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models

Samet Gunay () and Audil Rashid Khaki ()
Additional contact information
Samet Gunay: Finance Department, American University of the Middle East, Egaila 15453, Kuwait
Audil Rashid Khaki: Finance Department, American University of the Middle East, Egaila 15453, Kuwait

Journal of Risk and Financial Management, 2018, vol. 11, issue 2, 1-19

Abstract: Precise modeling and forecasting of the volatility of energy futures is vital to structuring trading strategies in spot markets for risk managers. Capturing conditional distribution, fat tails and price spikes properly is crucial to the correct measurement of risk. This paper is an attempt to model volatility of energy futures under different distributions. In empirical analysis, we estimate the volatility of Natural Gas Futures, Brent Oil Futures and Heating Oil Futures through GARCH and APARCH models under gev, gat and alpha-stable distributions. We also applied various VaR analyses, Gaussian, Historical and Modified (Cornish-Fisher) VaR, for each variable. Results suggest that the APARCH model largely outperforms the GARCH model, and gat distribution performs better in modeling fat tails in returns. Our results also indicate that the correct volatility level, in gat distribution, is higher than those suggested under normal distribution with rates of 56%, 45% and 67% for Natural Gas Futures, Brent Oil Futures and Heating Oil Futures, respectively. Implemented VaR analyses also support this conclusion. Additionally, VaR test results demonstrate that energy futures display riskier behavior than S&P 500 returns. Our findings suggest that for optimum risk management and trading strategies, risk managers should consider alternative distributions in their models. According to our results, prices in energy markets are wilder than the perception of normal distribution. In this regard, regulators and policy makers should enhance transparency and competitiveness in the energy markets to protect consumers.

Keywords: volatility modeling; APARCH; gev; gat; alpha-stable distribution (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
https://www.mdpi.com/1911-8074/11/2/30/pdf (application/pdf)
https://www.mdpi.com/1911-8074/11/2/30/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:11:y:2018:i:2:p:30-:d:151623

Access Statistics for this article

Journal of Risk and Financial Management is currently edited by Prof. Dr. Michael McAleer

More articles in Journal of Risk and Financial Management from MDPI, Open Access Journal
Bibliographic data for series maintained by XML Conversion Team ().

 
Page updated 2018-10-25
Handle: RePEc:gam:jjrfmx:v:11:y:2018:i:2:p:30-:d:151623