EconPapers    
Economics at your fingertips  
 

Stochastic Conditional Duration Model with Intraday Seasonality and Limit Order Book Information

Tomoki Toyabe () and Teruo Nakatsuma
Additional contact information
Tomoki Toyabe: Graduate School of Economics, Keio University, Tokyo 108-8345, Japan

JRFM, 2022, vol. 15, issue 10, 1-25

Abstract: It is a widely known fact that the intraday seasonality of trading intervals for financial transactions such as stocks is short at the beginning of business hours and long in the middle of the day. In this paper, we extend the stochastic conditional duration (SCD) model to capture the pattern of intraday trading intervals and propose a new Markov chain Monte Carlo method to estimate this intraday seasonality simultaneously. To efficiently generate the Monte Carlo sample, we used a hybrid of the Gibbs/Metropolis–Hastings (MH) sampling scheme and also applied generalized Gibbs sampling. In addition to capturing this intraday seasonality, this paper also considers limit order book information. Three-day tick data for three stocks obtained from Nikkei NEEDS are used for estimation, and model selection is performed on smooth parameters, Weibull distribution and Gamma distribution. The typical intraday regularity of frequent trading immediately after the start of trading is confirmed, and the spread of the limit order book information is also found to affect the trading time interval.

Keywords: Bayesian inference; Markov chain Monte Carlo; Metropolis–Hastings algorithm; state space model; block sampler (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1911-8074/15/10/470/pdf (application/pdf)
https://www.mdpi.com/1911-8074/15/10/470/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:15:y:2022:i:10:p:470-:d:944931

Access Statistics for this article

JRFM is currently edited by Ms. Chelthy Cheng

More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:10:p:470-:d:944931