Forecasting Detrended Volatility Risk and Financial Price Series Using LSTM Neural Networks and XGBoost Regressor
Aistis Raudys () and
Edvinas Goldstein
Additional contact information
Aistis Raudys: Institute of Informatics, Vilnius University, Didlaukio g. 47, LT-08303 Vilnius, Lithuania
Edvinas Goldstein: Institute of Informatics, Vilnius University, Didlaukio g. 47, LT-08303 Vilnius, Lithuania
JRFM, 2022, vol. 15, issue 12, 1-12
Abstract:
It is common practice to employ returns, price differences or log returns for financial risk estimation and time series forecasting. In De Prado’s 2018 book, it was argued that by using returns we lose memory of time series. In order to verify this statement, we examined the differences between fractional differencing and logarithmic transformations and their impact on data memory. We employed LSTM (long short-term memory) recurrent neural networks and an XGBoost regressor on the data using those transformations. We forecasted risk (volatility) and price value and compared the results of all models using original, unmodified prices. From the results, models showed that, on average, a logarithmic transformation achieved better volatility predictions in terms of mean squared error and accuracy. Logarithmic transformation was the most promising transformation in terms of profitability. Our results were controversial to Marco Lopez de Prado’s suggestion, as we managed to achieve the most accurate volatility predictions in terms of mean squared error and accuracy using logarithmic transformation instead of fractional differencing. This transformation was also most promising in terms of profitability.
Keywords: returns; detrending; LSTM; trading strategies (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1911-8074/15/12/602/pdf (application/pdf)
https://www.mdpi.com/1911-8074/15/12/602/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:15:y:2022:i:12:p:602-:d:1001937
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().