Machine-Learning-Based Semiparametric Time Series Conditional Variance: Estimation and Forecasting
Justin Dang and
Aman Ullah
Additional contact information
Justin Dang: Department of Economics, University of California, Riverside, CA 92521, USA
JRFM, 2022, vol. 15, issue 1, 1-12
Abstract:
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares estimator, is used to estimate the nonparametric component. We discuss how to estimate the semiparametric estimator using real data and how to use this estimator to make forecasts for the conditional variance. Simulations are conducted to show the dominance of the proposed estimator in terms of mean squared error. An empirical application using S&P 500 daily returns is analyzed, and the semiparametric estimator effectively forecasts future volatility.
Keywords: conditional variance; nonparametric estimator; semiparametric models; forecasting; machine learning; kernel-regularized least squares (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/15/1/38/pdf (application/pdf)
https://www.mdpi.com/1911-8074/15/1/38/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:38-:d:726304
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().