EconPapers    
Economics at your fingertips  
 

Copula Modelling to Analyse Financial Data

Paul R. Dewick and Shuangzhe Liu
Additional contact information
Paul R. Dewick: Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia
Shuangzhe Liu: Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia

JRFM, 2022, vol. 15, issue 3, 1-11

Abstract: Copula modelling is a popular tool in analysing the dependencies between variables. Copula modelling allows the investigation of tail dependencies, which is of particular interest in risk and survival applications. Copula modelling is also of specific interest to economic and financial modelling as it can help in the prediction of financial contagion and periods of “boom” or “bust”. Bivariate copula modelling has a rich variety of copulas that may be chosen to represent the modelled dataset dependencies and possible extreme events that may lie within the dataset tails. Financial copula modelling tends to diverge as this richness of copula types within the literature may not be well realised with the two different types of modelling, one being non-time-series and the other being time-series, being undertaken differently. This paper investigates standard copula modelling and financial copula modelling and shows why the modelling strategies in using time-series and non-time-series copula modelling is undertaken using different methods. This difference, apart from the issues surrounding the time-series component, is mostly due to standard copula modelling having the ability to use empirical CDFs for the probability integral transformation. Financial time-series copula modelling uses pseudo-CDFs due to the standardized time-series residuals being centred around zero. The standardized residuals inhibit the estimation of the possible distributions required for constructing the copula model in the usual manner.

Keywords: financial; non-stationary; time-series; copula; dependence; risk; univariate; bivariate (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1911-8074/15/3/104/pdf (application/pdf)
https://www.mdpi.com/1911-8074/15/3/104/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:15:y:2022:i:3:p:104-:d:758384

Access Statistics for this article

JRFM is currently edited by Ms. Chelthy Cheng

More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:3:p:104-:d:758384