Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors
Chaoyi Chen and
Thanasis Stengos
JRFM, 2022, vol. 15, issue 6, 1-15
Abstract:
In this paper, we study the estimation and inference of the threshold model with hybrid local stochastic unit root regressors. Our main contribution is to propose an estimator that generalizes the threshold model with various forms of nonstationary regressors and to obtain its limiting distribution theory. In particular, our proposed model generalizes the threshold model with unit root, local-to-unity, and stochastic unit root regressors. We provide the estimation strategy for the least squares estimator and derive the asymptotic results for the proposed estimator. Depending on the diminishing rate of the threshold effect, we find that the limiting distribution of the threshold estimator takes different forms. Monte Carlo simulations are used to assess our proposed estimator’s finite sample performance, which is found to perform well.
Keywords: threshold model; hybrid local stochastic unit root (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/15/6/242/pdf (application/pdf)
https://www.mdpi.com/1911-8074/15/6/242/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:15:y:2022:i:6:p:242-:d:826559
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().