A Particle Swarm Optimization Copula-Based Approach with Application to Cryptocurrency Portfolio Optimisation
Jules Clement Mba and
Magdaline Mbong Mai
Additional contact information
Magdaline Mbong Mai: Cultural Studies and Applied Linguistics (LanCSAL), University of Johannesburg, Languages, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
JRFM, 2022, vol. 15, issue 7, 1-14
Abstract:
Blockchain and cryptocurrency are gradually going mainstream with new cryptocurrencies introduced every single day. The speculative nature of these digital assets expose their prices to large fluctuations. Trading these crypto-assets necessitate an adequate understanding of this emerging market as well as adequate tools to model the market risk and efficient allocation of funds. This may assist crypto investors in taking advantage of the highly volatile aspects of these assets. The portfolio consider in this study consists of six cryptocurrencies: four traditional cryptocurrencies (BTC, ETH, BNB and XRP) and two stablecoins (USDT and USDC). We examine the copula particle swarm optimization (CPSO) portfolio strategy against three other portfolio strategies, namely, the global minimum variance (GMV), the most diversified portfolio (MDP) and the minimum tail dependent (MTD). CPSO appears to be a promising strategy during extreme market conditions while GMV seem favorable during normal market conditions. Most importantly, hedge and safe-havens ability of the two stablecoins is clearly exhibited with CPSO, while their diversification property is inhibited.
Keywords: cryptocurrencies; copula; particle swarm optimization; differential evolution; CVaR (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/15/7/285/pdf (application/pdf)
https://www.mdpi.com/1911-8074/15/7/285/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:15:y:2022:i:7:p:285-:d:849511
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().