The GARCH-EVT-Copula Approach to Investigating Dependence and Quantifying Risk in a Portfolio of Bitcoin and the South African Rand
Thabani Ndlovu () and
Delson Chikobvu
Additional contact information
Thabani Ndlovu: Department of Mathematical Statistics and Actuarial Science, University of the Free State, Bloemfontein 9300, South Africa
Delson Chikobvu: Department of Mathematical Statistics and Actuarial Science, University of the Free State, Bloemfontein 9300, South Africa
JRFM, 2024, vol. 17, issue 11, 1-16
Abstract:
This study uses a hybrid model of the exponential generalised auto-regressive conditional heteroscedasticity (eGARCH)-extreme value theory (EVT)-Gumbel copula model to investigate the dependence structure between Bitcoin and the South African Rand, and quantify the portfolio risk of an equally weighted portfolio. The Gumbel copula, an extreme value copula, is preferred due to its versatile ability to capture various tail dependence structures. To model marginals, firstly, the eGARCH(1, 1) model is fitted to the growth rate data. Secondly, a mixture model featuring the generalised Pareto distribution (GPD) and the Gaussian kernel is fitted to the standardised residuals from an eGARCH(1, 1) model. The GPD is fitted to the tails while the Gaussian kernel is used in the central parts of the data set. The Gumbel copula parameter is estimated to be α = 1.007 , implying that the two currencies are independent. At 90%, 95%, and 99% levels of confidence, the portfolio’s diversification effects (DE) quantities using value at risk (VaR) and expected shortfall (ES) show that there is evidence of a reduction in losses (diversification benefits) in the portfolio compared to the risk of the simple sum of single assets. These results can be used by fund managers, risk practitioners, and investors to decide on diversification strategies that reduce their risk exposure.
Keywords: Gaussian kernel; generalised Pareto distribution; Gumbel copula; tail dependence; diversification effects; value at risk; expected shortfall (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/17/11/504/pdf (application/pdf)
https://www.mdpi.com/1911-8074/17/11/504/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:17:y:2024:i:11:p:504-:d:1517218
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().