Analyzing the Selective Stock Price Index Using Fractionally Integrated and Heteroskedastic Models
Javier E. Contreras-Reyes (),
Joaquín E. Zavala and
Byron J. Idrovo-Aguirre
Additional contact information
Javier E. Contreras-Reyes: Instituto de Matemática, Física y Estadística, Facultad de Ingeniería y Negocios, Universidad de Las Américas, Sede Viña del Mar, 7 Norte 1348, Viña del Mar 2531098, Chile
Joaquín E. Zavala: Advanced Analytics Management, Ripley Chile, Santiago 7561275, Chile
Byron J. Idrovo-Aguirre: Gerencia de Estudios y Políticas Públicas, Cámara Chilena de la Construcción, Santiago 7560860, Chile
JRFM, 2024, vol. 17, issue 9, 1-17
Abstract:
Stock market indices are important tools to measure and compare stock market performance. The Selective Stock Price (SSP) index reflects fluctuations in a set value of financial instruments of Santiago de Chile’s stock exchange. Stock indices also reflect volatility linked to high uncertainty or potential investment risk. However, economic shocks are altering volatility. Evidence of long memory in SSP time series also exists, which implies long-term persistence. In this paper, we studied the volatility of SSP time series from January 2010 to September 2023 using fractionally heteroskedastic models. We considered the Autoregressive Fractionally Integrated Moving Average (ARFIMA) process with Generalized Autoregressive Conditional Heteroskedasticity (GARCH) innovations—the ARFIMA-GARCH model—for SSP log returns, and the fractionally integrated GARCH, or FIGARCH model, was compared with a classical GARCH one. The results show that the ARFIMA-GARCH model performs best in terms of volatility fit and predictive quality. This model allows us to obtain a better understanding of the observed volatility and its behavior, which contributes to more effective investment risk management in the stock market. Moreover, the proposed model detects the influence volatility increments of the SSP index linked to external factors that impact the economic outlook, such as China’s economic slowdown in 2012 and the subprime crisis in 2008.
Keywords: selective stock price; stock markets; volatility; GARCH model; long memory; ARFIMA model; FIGARCH model (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1911-8074/17/9/401/pdf (application/pdf)
https://www.mdpi.com/1911-8074/17/9/401/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:17:y:2024:i:9:p:401-:d:1473594
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().