Sustainable Factor Augmented Machine Learning Models for Crude Oil Return Forecasting
Lianxu Wang () and
Xu Chen
Additional contact information
Lianxu Wang: E.T.S. DE Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660 Madrid, Spain
Xu Chen: School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin, Ireland
JRFM, 2025, vol. 18, issue 7, 1-27
Abstract:
The global crude oil market, known for its pronounced volatility and nonlinear dynamics, plays a pivotal role in shaping economic stability and informing investment strategies. Contrary to traditional research focused on price forecasting, this study emphasizes the more investor-centric task of predicting returns for West Texas Intermediate (WTI) crude oil. By spotlighting returns, it directly addresses critical investor concerns such as asset allocation and risk management. This study applies advanced machine learning models, including XGBoost, random forest, and neural networks to predict crude oil return, and for the first time, incorporates sustainability and external risk variables, which are shown to enhance predictive performance in capturing the non-stationarity and complexity of financial time-series data. To enhance predictive accuracy, we integrate 55 variables across five dimensions: macroeconomic indicators, financial and futures markets, energy markets, momentum factors, and sustainability and external risk. Among these, the rate of change stands out as the most influential predictor. Notably, XGBoost demonstrates a superior performance, surpassing competing models with an impressive 76% accuracy in direction forecasting. The analysis highlights how the significance of various predictors shifted during the COVID-19 pandemic. This underscores the dynamic and adaptive character of crude oil markets under substantial external disruptions. In addition, by incorporating sustainability factors, the study provides deeper insights into the drivers of market behavior, supporting more informed portfolio adjustments, risk management strategies, and policy development aimed at fostering resilience and advancing sustainable energy transitions.
Keywords: crude oil features; machine learning; sustainability factors; forecasting models (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/18/7/351/pdf (application/pdf)
https://www.mdpi.com/1911-8074/18/7/351/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:18:y:2025:i:7:p:351-:d:1686223
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().