EconPapers    
Economics at your fingertips  
 

From Headlines to Forecasts: Narrative Econometrics in Equity Markets

Davit Hayrapetyan () and Ruben Gevorgyan
Additional contact information
Davit Hayrapetyan: Faculty of Philosophy and Psychology, Yerevan State University, Yerevan 0025, Armenia
Ruben Gevorgyan: Faculty of Economics and Management, Yerevan State University, Yerevan 0025, Armenia

JRFM, 2025, vol. 18, issue 9, 1-31

Abstract: This study investigates whether firm-specific narratives extracted from the news add predictive content to monthly stock return models. Using bidirectional encoder representations from transformer-based topic modeling (BERTopic), we processed Microsoft (MSFT) news and constructed monthly narrative activations (binary presence and decay weighting). These narrative activations are used in autoregressive moving-average models with exogenous regressors (ARIMA-X) to analyze MSFT monthly log returns alongside the U.S. Economic Policy Uncertainty (EPU) index from February 2021 to March 2025. Decay models using a similarity-distilled BERT embedding yielded three significant narratives: Media and Public Perception (MPP) (β = 0.0128, p = 0.002), Currency and Macro Environment (CME) (β = −0.0143, p < 0.001), and Tech and Semiconductor Ecosystem (TSE) (β = −0.0606, p = 0.014). Binary activation identifies reputational shocks: the Media and Public Perception (MPP) indicator predicts lower returns at one- and two-month lags (β = −0.0758, p = 0.043; β = −0.1048, p = 0.007). A likelihood-ratio test comparing ARIMA-X models with narrative regressors to a baseline ARIMA (no narratives) rejects the null hypothesis that narratives add no improvement in fit ( p < 0.01). Firm-level narratives enhance monthly forecasts beyond conventional predictors; decay activation and similarity-distilled embeddings perform best. Demonstrated on Microsoft as a proof of concept, the ticker-agnostic design scales to multiple firms and sectors, contingent on sufficient firm-tagged news coverage for external validity.

Keywords: narrative econometrics; firm-level financial narratives; BERTopic topic modeling; transformer-based sentence embeddings; narrative time series forecasting (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1911-8074/18/9/524/pdf (application/pdf)
https://www.mdpi.com/1911-8074/18/9/524/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:524-:d:1752477

Access Statistics for this article

JRFM is currently edited by Ms. Chelthy Cheng

More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-19
Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:524-:d:1752477