From Headlines to Forecasts: Narrative Econometrics in Equity Markets
Davit Hayrapetyan () and
Ruben Gevorgyan
Additional contact information
Davit Hayrapetyan: Faculty of Philosophy and Psychology, Yerevan State University, Yerevan 0025, Armenia
Ruben Gevorgyan: Faculty of Economics and Management, Yerevan State University, Yerevan 0025, Armenia
JRFM, 2025, vol. 18, issue 9, 1-31
Abstract:
This study investigates whether firm-specific narratives extracted from the news add predictive content to monthly stock return models. Using bidirectional encoder representations from transformer-based topic modeling (BERTopic), we processed Microsoft (MSFT) news and constructed monthly narrative activations (binary presence and decay weighting). These narrative activations are used in autoregressive moving-average models with exogenous regressors (ARIMA-X) to analyze MSFT monthly log returns alongside the U.S. Economic Policy Uncertainty (EPU) index from February 2021 to March 2025. Decay models using a similarity-distilled BERT embedding yielded three significant narratives: Media and Public Perception (MPP) (β = 0.0128, p = 0.002), Currency and Macro Environment (CME) (β = −0.0143, p < 0.001), and Tech and Semiconductor Ecosystem (TSE) (β = −0.0606, p = 0.014). Binary activation identifies reputational shocks: the Media and Public Perception (MPP) indicator predicts lower returns at one- and two-month lags (β = −0.0758, p = 0.043; β = −0.1048, p = 0.007). A likelihood-ratio test comparing ARIMA-X models with narrative regressors to a baseline ARIMA (no narratives) rejects the null hypothesis that narratives add no improvement in fit ( p < 0.01). Firm-level narratives enhance monthly forecasts beyond conventional predictors; decay activation and similarity-distilled embeddings perform best. Demonstrated on Microsoft as a proof of concept, the ticker-agnostic design scales to multiple firms and sectors, contingent on sufficient firm-tagged news coverage for external validity.
Keywords: narrative econometrics; firm-level financial narratives; BERTopic topic modeling; transformer-based sentence embeddings; narrative time series forecasting (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/18/9/524/pdf (application/pdf)
https://www.mdpi.com/1911-8074/18/9/524/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:524-:d:1752477
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().