EconPapers    
Economics at your fingertips  
 

Mixed Land Use Evaluation and Its Impact on Housing Prices in Beijing Based on Multi-Source Big Data

Hanbing Yang, Meichen Fu, Li Wang and Feng Tang
Additional contact information
Hanbing Yang: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
Meichen Fu: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
Li Wang: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Feng Tang: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

Land, 2021, vol. 10, issue 10, 1-21

Abstract: The tense relationship between the supply and demand of land resources and the past spatial expansion of urban development in Beijing have brought many urban problems. Mixed land use is considered to be able to solve these urban problems as well as promote sustainable urban development. In this context, this study uses multi-source big data such as POI, OpenStreetMap and web crawler data to construct current land-use data of the area within the sixth ring road of Beijing, and then uses the entropy index and type number index to analyze the spatial distribution and aggregation characteristics of the mixed land-use level. Finally, a multi-scale geographically weighted regression is applied to explore the impact of the block and life circle scale mixed land use on housing prices. The results show that: (1) the accuracy of land use data obtained by using multi-source big data is high, and the consistency with the real land use situation is as high as 82.67%. (2) the mixed land use level in the study area is higher in the urban center and lower in the periphery of the city. However, it does not show the spatial distribution characteristics gradually decreasing with the increase of the distance from the urban center but shows that the area from the third to the fifth ring road is the highest. (3) the impact of block scale and life circle scale mixed land use on housing price is different. The type number index has a negative effect on the housing price in block scale mixed land use, while the entropy index has a positive effect on the housing price in life circle scale mixed land use. Based on the existing “bottom-up” individual-dominant development mode, the government of Beijing should issue relevant policies and documents to give “top-down” control and guidance in the future, so as to promote the maximization of the benefits of mixed land use. Furthermore, in the practice of mixed land use in Beijing, land use types should be reduced at the block scale and the area of different land use types should be balanced at the life circle scale.

Keywords: mixed land use; big data; multi-scale geographically weighted regression; housing price; Beijing (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2073-445X/10/10/1103/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/10/1103/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:10:p:1103-:d:659341

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:10:y:2021:i:10:p:1103-:d:659341