The Spatial Distribution and Prediction of Soil Heavy Metals Based on Measured Samples and Multi-Spectral Images in Tai Lake of China
Huihui Zhao,
Peijia Liu,
Baojin Qiao and
Kening Wu
Additional contact information
Huihui Zhao: School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, China
Peijia Liu: School of Politics and Public Administration, Zhengzhou University, Zhengzhou 450001, China
Baojin Qiao: School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, China
Kening Wu: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
Land, 2021, vol. 10, issue 11, 1-13
Abstract:
Soil is an important natural resource. The excessive amount of heavy metals in soil can harm and threaten human health. Therefore, monitoring of soil heavy metal content is urgent. Monitoring soil heavy metals by traditional methods requires many human and material resources. Remote sensing has shown advantages in the field of monitoring heavy metals. Based on 971 heavy metal samples and Sentinel-2 multi-spectral images in Tai Lake, China, we analyzed the correlation between six heavy metals (Cd, Hg, As, Pb, Cu, Zn) and spectral factors, and selected As and Hg as the input factors of inversion model. The correlation coefficient of the best model of As was 0.53 ( p < 0.01), and of Hg was 0.318 ( p < 0.01). We used the methods of partial least squares regression (PLSR) and back propagation neural network (BPNN) to establish inversion models with different combinations of spectral factors by using 649 measured samples. In addition, 322 measured samples were used for accuracy evaluation. Compared with the PLSR model, the BP neural network builds the model with higher accuracy, and B1-B4 combined with LnB1-LnB4 builds the model with the highest accuracy. The accuracy of the best model was verified, with an average error of 19% for As and 45% for Hg. Analyzing the spatial distribution of heavy metals by using the interpolation method of Kriging and IDW. The overall distribution trend of the two interpolations is similar. The concentration of As elements tends to increase from north to south, and the relatively high value of Hg elements is distributed in the east and west of the study area. The factories in the study area are distributed along rivers and lakes, which is consistent with the spatial distribution of heavy metal enrichment areas. The relatively high-value areas of heavy metal elements are related to the distribution of metal products factories, refractory porcelain factories, tile factories, factories and mining enterprises, etc., indicating that factory pollution is the main reason for the enrichment of heavy metals.
Keywords: anthrosols; BPNN; multi-spectral; PLSR; soil heavy metal; spatial distribution (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/2073-445X/10/11/1227/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/11/1227/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:11:p:1227-:d:676792
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().