Effect of Previous Crop Roots on Soil Compaction in 2 Yr Rotations under a No-Tillage System
Jay D. Jabro,
Brett L. Allen,
Tatyana Rand,
Sadikshya R. Dangi and
Joshua W. Campbell
Additional contact information
Jay D. Jabro: Northern Plains Agricultural Research Laboratory, ARS-USDA, 1500 N Central Avenue, Sidney, MT 59270, USA
Brett L. Allen: Northern Plains Agricultural Research Laboratory, ARS-USDA, 1500 N Central Avenue, Sidney, MT 59270, USA
Tatyana Rand: Northern Plains Agricultural Research Laboratory, ARS-USDA, 1500 N Central Avenue, Sidney, MT 59270, USA
Sadikshya R. Dangi: Northern Plains Agricultural Research Laboratory, ARS-USDA, 1500 N Central Avenue, Sidney, MT 59270, USA
Joshua W. Campbell: Northern Plains Agricultural Research Laboratory, ARS-USDA, 1500 N Central Avenue, Sidney, MT 59270, USA
Land, 2021, vol. 10, issue 2, 1-10
Abstract:
Compacted soils affect global crop productivity and environmental quality. A field study was conducted from 2014 to 2020 in the northern Great Plains, USA, to evaluate the effect of various rooting systems on soil compaction in 2 yr rotations of camelina ( Camelina sativa L.), carinata ( Brassica carinata A.) and a cover crop mix planted in place of fallow with durum ( Triticum durum D.). The study was designed as a randomized complete block with three replications in a no-tillage system. The soil was classified as Dooley sandy loam (fine-loamy, mixed, superactive, frigid Typic Argiustolls) derived from glacial till parent material. Three measurements of soil penetration resistance (PR) were taken with a penetrometer to a depth of 0–30 cm within each plot. Soil moisture contents were determined using a TDR sensor at the time of PR measurements. Both measurements were monitored prior to planting in spring and after harvest. Initial PR results from spring 2014 showed that all plots had an average of 2.244 MPa between the 8–20 cm depth, due to a history of tillage and wheel traffic caused by various field activities. Covariance analysis indicated that soil PR was not significantly affected by crop type and moisture content. After one cycle of the 2 yr rotation, the 2016 measurements indicated that the compacted layer existed at the same initial depths. However, after two and three cycles, soil PR values were reduced to 1.480, 1.812, 1.775, 1.645 MPa in spring 2018 and 1.568, 1.581, 1.476, 1.458 MPa in 2020 under camelina, carinata, cover crop mix, and durum treatments, respectively. These findings indicate that previous cover crop roots could effectively improve soil compaction by penetrating the compacted layer, decompose over time and form voids and root channels. Although these results are novel and significant, further research is needed on different soils and under cover crops with different root systems to support our findings prior to making any conclusion.
Keywords: soil compaction; penetration resistance; biological method; root channels; bio-pores (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/2073-445X/10/2/202/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/2/202/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:2:p:202-:d:500623
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().