EconPapers    
Economics at your fingertips  
 

Integrating MODIS and Landsat Data for Land Cover Classification by Multilevel Decision Rule

Xudong Guan, Chong Huang and Rui Zhang
Additional contact information
Xudong Guan: Research Center for Digital Mountain and Remote Sensing Application, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Chong Huang: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Rui Zhang: Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

Land, 2021, vol. 10, issue 2, 1-18

Abstract: In some cloudy and rainy regions, the cloud cover is high in moderate-high resolution remote sensing images collected by satellites with a low revisit cycle, such as Landsat. This presents an obstacle for classifying land cover in cloud-covered parts of the image. A decision fusion scheme is proposed for improving land cover classification accuracy by integrating the complementary information of MODIS (Moderate-resolution Imaging Spectroradiometer) time series data with Landsat moderate-high spatial resolution data. The multilevel decision fusion method includes two processes. First, MODIS and Landsat data are pre-classified by fuzzy classifiers. Second, the pre-classified results are assembled according to their assessed performance. Thus, better pre-classified results are retained and worse pre-classified results are restrained. For the purpose of solving the resolution difference between MODIS and Landsat data, the proposed fusion scheme employs an object-oriented weight assignment method. A decision rule based on a compromise operator is applied to assemble pre-classified results. Three levels of data containing different types of information are combined, namely the MODIS pixel-level and object-level data, and the Landsat pixel-level data. The multilevel decision fusion scheme was tested on a site in northeast Thailand. The fusion results were compared with the single data source classification results, showing that the multilevel decision fusion results had a higher overall accuracy. The overall accuracy is improved by more than 5 percent. The method was also compared to the two-level combination results and a weighted sum decision rule-based approach. A comparison experiment showed that the multilevel decision fusion rule had a higher overall accuracy than the weighted sum decision rule-based approach and the low-level combination approach. A major limitation of the method is that the accuracy of some of the land covers, where areas are small, are not as improved as the overall accuracy.

Keywords: image classification; decision fusion; multi-temporal; remote sensing (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/10/2/208/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/2/208/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:2:p:208-:d:501824

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:208-:d:501824