EconPapers    
Economics at your fingertips  
 

Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability

Shirin Moradi, Thomas Heinze, Jasmin Budler, Thanushika Gunatilake, Andreas Kemna and Johan Alexander Huisman
Additional contact information
Shirin Moradi: Agrosphere Institute (IBG 3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Thomas Heinze: Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany
Jasmin Budler: Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany
Thanushika Gunatilake: Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany
Andreas Kemna: Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany
Johan Alexander Huisman: Agrosphere Institute (IBG 3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Land, 2021, vol. 10, issue 4, 1-23

Abstract: Rainfall-induced landslides are a disastrous natural hazard causing loss of life and significant damage to infrastructure, farmland and housing. Hydromechanical models are one way to assess the slope stability and to predict critical combinations of groundwater levels, soil water content and precipitation. However, hydromechanical models for slope stability evaluation require knowledge about mechanical and hydraulic parameters of the soils, lithostratigraphy and morphology. In this work, we present a multi-method approach of site characterization and investigation in combination with a hydromechanical model for a landslide-prone hillslope near Bonn, Germany. The field investigation was used to construct a three-dimensional slope model with major geological units derived from drilling and refraction seismic surveys. Mechanical and hydraulic soil parameters were obtained from previously published values for the study site based on laboratory analysis. Water dynamics were monitored through geoelectrical monitoring, a soil water content sensor network and groundwater stations. Historical data were used for calibration and validation of the hydromechanical model. The well-constrained model was then used to calculate potentially hazardous precipitation events to derive critical thresholds for monitored variables, such as soil water content and precipitation. This work introduces a potential workflow to improve numerical slope stability analysis through multiple data sources from field investigations and outlines the usage of such a system with respect to a site-specific early-warning system.

Keywords: landslide; hydromechanical modeling; early-warning; slope stability; rainfall-induced landslides; local factor of safety; SoilNet; geophysical characterization; water content distribution; bedrock topography (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2073-445X/10/4/423/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/4/423/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:4:p:423-:d:537062

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:10:y:2021:i:4:p:423-:d:537062