Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2
Gregoriy Kaplan and
Offer Rozenstein
Additional contact information
Gregoriy Kaplan: Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization-Volcani Institute, HaMaccabim Road 68, P.O.B 15159, Rishon LeZion 7528809, Israel
Offer Rozenstein: Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization-Volcani Institute, HaMaccabim Road 68, P.O.B 15159, Rishon LeZion 7528809, Israel
Land, 2021, vol. 10, issue 5, 1-13
Abstract:
Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R 2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R 2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R 2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R 2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.
Keywords: Sentinel-2; spectral bands; LAI; vegetation indices (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/2073-445X/10/5/505/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/5/505/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:5:p:505-:d:550987
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().