EconPapers    
Economics at your fingertips  
 

Stream Temperature and Environment Relationships in a Semiarid Riparian Corridor

Nicole Durfee, Carlos G. Ochoa and Gerrad Jones
Additional contact information
Nicole Durfee: Water Resources Graduate Program, Oregon State University, Corvallis, OR 97331, USA
Carlos G. Ochoa: College of Agricultural Sciences, Ecohydrology Lab, Oregon State University, Corvallis, OR 97331, USA
Gerrad Jones: Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA

Land, 2021, vol. 10, issue 5, 1-22

Abstract: This study examined the relationship between stream temperature and environmental variables in a semiarid riparian corridor in northcentral Oregon, USA. The relationships between riparian vegetation cover, subsurface flow temperature, and stream temperature were characterized along an 800 m reach. Multiple stream temperature sensors were located along the reach, in open and closed canopy areas, with riparian vegetation cover ranging from 4% to 95%. A support vector regression (SVR) model was developed to assess the relationship between environmental characteristics and stream temperature at the larger valley scale. At the reach scale, results show that air temperature was highly correlated with stream temperature (Pearson’s r = 0.97), and no significant (p < 0.05) differences in stream temperature levels were found among sensor locations, irrespective of percent vegetation cover. Channel subsurface temperature levels from an intermittent flow tributary were generally cooler than those in the perennial stream in the summer and warmer during winter months, indicating that the tributary may have a localized moderating effect on stream temperature. At the valley scale, results from the SVR model showed that air temperature, followed by streamflow, was the strongest variable influencing stream temperature. Also, riparian area land cover showed little effect on stream temperature along the entire riparian corridor. This research indicates that air temperature, subsurface flow, and streamflow are important variables affecting the stream temperature variability observed in the study area.

Keywords: stream temperature; air temperature; riparian; climate change; land use; semiarid (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2073-445X/10/5/519/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/5/519/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:5:p:519-:d:553778

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:519-:d:553778