Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data
Patryk Hara,
Magdalena Piekutowska and
Gniewko Niedbała
Additional contact information
Patryk Hara: Department of Agrobiotechnology, Koszalin University of Technology, Racławicka 15–17, 75-620 Koszalin, Poland
Magdalena Piekutowska: Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 27 Partyzantów St., 76-200 Słupsk, Poland
Gniewko Niedbała: Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
Land, 2021, vol. 10, issue 6, 1-21
Abstract:
Knowing the expected crop yield in the current growing season provides valuable information for farmers, policy makers, and food processing plants. One of the main benefits of using reliable forecasting tools is generating more income from grown crops. Information on the amount of crop yielding before harvesting helps to guide the adoption of an appropriate strategy for managing agricultural products. The difficulty in creating forecasting models is related to the appropriate selection of independent variables. Their proper selection requires a perfect knowledge of the research object. The following article presents and discusses the most commonly used independent variables in agricultural crop yield prediction modeling based on artificial neural networks (ANNs). Particular attention is paid to environmental variables, such as climatic data, air temperature, total precipitation, insolation, and soil parameters. The possibility of using plant productivity indices and vegetation indices, which are valuable predictors obtained due to the application of remote sensing techniques, are analyzed in detail. The paper emphasizes that the increasingly common use of remote sensing and photogrammetric tools enables the development of precision agriculture. In addition, some limitations in the application of certain input variables are specified, as well as further possibilities for the development of non-linear modeling, using artificial neural networks as a tool supporting the practical use of and improvement in precision farming techniques.
Keywords: crop yield prediction; independent variables; ANN; remote sensing (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.mdpi.com/2073-445X/10/6/609/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/6/609/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:6:p:609-:d:570523
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().