EconPapers    
Economics at your fingertips  
 

Flood Risk Assessment under Land Use and Climate Change in Wuhan City of the Yangtze River Basin, China

Zhihui Li, Keyu Song and Lu Peng
Additional contact information
Zhihui Li: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Keyu Song: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Lu Peng: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Land, 2021, vol. 10, issue 8, 1-16

Abstract: Frequently occurring flood disasters caused by extreme climate and urbanization processes have become the most common natural hazard and pose a great threat to human society. Therefore, urban flood risk assessment is of great significance for disaster mitigation and prevention. In this paper, the analytic hierarchy process (AHP) was applied to quantify the spatiotemporal variations in flood risk in Wuhan during 2000–2018. A comprehensive flood risk assessment index system was constructed from the hazard, sensitivity, and vulnerability components with seven indices. The results showed that the central urban area, especially the area in the west bank of the Yangtze river, had high risk due to its high flood sensitivity that was determined by land use type and high vulnerability with dense population and per unit GDP. Specifically, the Jianghan, Qiaokou, Jiangan, and Wuchang districts had the highest flood risk, more than 60% of whose area was in medium or above-medium risk regions. During 2000–2018, the flood risk overall showed an increasing trend, with Hongshan district increasing the most, and the year of 2010 was identified as a turning point for rapid risk increase. In addition, the comparison between the risk maps and actual historical inundation point records showed good agreement, indicating that the assessment framework and method proposed in this study can be useful to assist flood mitigation and management, and relevant policy recommendations were proposed based on the assessment results.

Keywords: flood risk; land use change; climate change; analytic hierarchy process; Wuhan city (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2073-445X/10/8/878/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/8/878/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:8:p:878-:d:618895

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:878-:d:618895