Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal
Feng Tang,
Xu Zhou,
Li Wang,
Yangjian Zhang,
Meichen Fu and
Pengtao Zhang
Additional contact information
Feng Tang: School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
Xu Zhou: Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
Li Wang: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Yangjian Zhang: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Meichen Fu: School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
Pengtao Zhang: College of Land and Resources, Hebei Agricultural University, Baoding 071001, China
Land, 2021, vol. 10, issue 9, 1-23
Abstract:
Rapid urbanization and drastic land-use change have led to landscape fragmentation and ecological environment deterioration in the regions along the Grand Canal. Building an ecological network is an important means to improve the connectivity of habitat patches and carry out ecological protection and restoration of territorial space, which is of great significance to ensure regional biodiversity and ecological security. In this article, we took the Huaiyang Section of the Grand Canal (Huaiyang Canal) as the study area, used the ecosystem service assessment model, morphological spatial pattern analysis (MSPA), and the landscape connectivity evaluation method to identify ecological sources, then used the minimum cumulative resistance (MCR) model and the gravity model to extract and grade ecological corridors. Based on these, the ecological network was constructed by combining the identification method of ecological nodes and ecological breakpoints. The aim of this was to provide a reference for the ecological space optimization of Huaiyang Canal and even the entire Grand Canal, the formulation of an ecological protection plan, and the implementation of territorial space ecological restoration. The results showed that the spatial distribution of the water conservation service, soil conservation service, carbon sequestration service, and biodiversity conservation service were significantly different, and the level of ecosystem services showed a trend of continuous degradation from 1990 to 2018. There were 12 ecological source patches comprehensively identified by multiple methods, with a total area of 2007.06 km 2 . In terms of spatial distribution, large ecological source patches were mainly distributed in the central and western areas adjacent to the Grand Canal, while small ecological source patches were scattered in the eastern and southern border regions of the study area. The total length of ecological corridors was 373.84 km, of which the number of the primary ecological corridor, secondary ecological corridor, and tertiary ecological corridor were 9, 7, and 7, respectively, and the suitable width of the ecological corridor was 200–400 m. After optimization, the proposed ecological network was composed of 3 key ecological source patches, 9 important ecological source patches, 23 terrestrial corridors, 10 aquatic corridors, and 18 ecological nodes. Twenty-nine ecological breakpoints were key areas requiring ecological restoration. The overlap rate of the integrated ecosystem service change area and land-use change area was 99%, indicating that land-use change has a significant impact on regional ecosystem services. This study is of great significance for carrying out the ecological protection and restoration of the Huaiyang Canal and adjusting local land-use policies. It also provides a typical case demonstration for identifying an ecological network and formulating ecological restoration planning for other sections of the Grand Canal and cities along the canal.
Keywords: ecological network; ecosystem service; MSPA; MCR model; the Grand Canal (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/2073-445X/10/9/919/pdf (application/pdf)
https://www.mdpi.com/2073-445X/10/9/919/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:10:y:2021:i:9:p:919-:d:626379
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().