EconPapers    
Economics at your fingertips  
 

Self-Purification Mode of Still-Water Ponds in Urban Parks Based on In Situ Ecological Remediation Design

Hang Yin, Wenyan Liang and Xin Cao ()
Additional contact information
Hang Yin: School of Art and Archaeology, Zhejiang University City College, Hangzhou 310015, China
Wenyan Liang: College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
Xin Cao: School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Land, 2022, vol. 11, issue 10, 1-25

Abstract: Still-water ponds in urban parks are often eutrophic; hence, these ponds are typically at risk of algal blooms, which have a negative impact on landscapes and visitor experiences. Instead of adopting the current mainstream methods of ex situ ecological remediation with flowing water bodies, such as the construction of a circulating filtration system or an artificial wetland system around the pond, this research adopted in situ ecological remediation in still-water ponds to suppress algal blooms. The plan was implemented through a small-scale engineering design and plant configuration inside the pond. Using six still-water ponds in Beijing Yu Park as experimental sites, different mini-engineering designs and plant configurations were implemented at different ponds to perform comparative experiments, and the water quality of each pond was monitored for three consecutive years. By summarizing the variation in key water quality indices for each pond, we found that a mini-engineering design of “multilevel” pond revetments and lakebeds combined with a “multilayer” aquatic macrophyte configuration of floating-leaved plants, emergent plants, and submerged plants could effectively inhibit algal blooms. Thus, an effective ecological self-purification model and corresponding landscape design principles for still-water ponds in urban parks were proposed.

Keywords: landscape architecture; urban parks; waterscape; aquatic plants; ecological remediation (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/11/10/1676/pdf (application/pdf)
https://www.mdpi.com/2073-445X/11/10/1676/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:11:y:2022:i:10:p:1676-:d:927831

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1676-:d:927831