EconPapers    
Economics at your fingertips  
 

A Comparative Analysis of Characteristics and Synoptic Backgrounds of Extreme Heat Events over Two Urban Agglomerations in Southeast China

Xiaoyan Sun, Xiaoyu Gao (), Yali Luo (), Wai-Kin Wong and Haiming Xu
Additional contact information
Xiaoyan Sun: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disasters of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Xiaoyu Gao: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Yali Luo: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disasters of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Wai-Kin Wong: Hong Kong Observatory, Hong Kong 999077, China
Haiming Xu: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disasters of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

Land, 2022, vol. 11, issue 12, 1-18

Abstract: Based on high-resolution surface observation and reanalysis data, this paper analyzes the extreme heat events (EHEs) over two densely populated urban agglomerations in southeast China, namely the Yangtze River Delta (YRD) and the Pearl River Delta (PRD), including the spatial–temporal distribution of heatwaves and warm nights and the synoptic backgrounds for regional heatwaves. The results show that the occurrence frequency of EHEs is modulated significantly by local underlying features (i.e., land–sea contrast, terrain), and the strong nocturnal urban heat island effects make warm nights much more likely to occur in cities than rural areas during heatwaves. About 80% of the YRD regional heatwaves occur from 15 July to 15 August, while a lower fraction (53%) of the PRD heatwaves is found during this mid-summer period, which partially explains the warm-season average intensity of the former being 2–3 times the latter. A persistent, profound subtropical high is the dominant synoptic system responsible for the mid-summer YRD heatwaves, which forces significant descending motion leading to long-duration sunny weather. The mid-summer PRD heatwaves involve both high-pressure systems and tropical cyclones (TCs). A TC is present to the east of the PRD region on most (about 72%) PRD heatwave days. The organized northerly winds in the planetary boundary layer in the outer circulation of the TC transport the inland warm air, which is heated by the foehn effect at the lee side of the Nanling Mountains and possibly also the surface sensible heat flux, towards the PRD region, leading to the occurrence of the extremely high temperatures.

Keywords: extreme heat event; urban heat island; subtropical high; tropical cyclone (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/11/12/2235/pdf (application/pdf)
https://www.mdpi.com/2073-445X/11/12/2235/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:11:y:2022:i:12:p:2235-:d:997014

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2235-:d:997014