EconPapers    
Economics at your fingertips  
 

Monitoring 3D Changes in Urban Forests Using Landscape Metrics Analyses Based on Multi-Temporal Remote Sensing Data

Karolina Zięba-Kulawik and Piotr Wężyk
Additional contact information
Karolina Zięba-Kulawik: Department of Forest Resource Management, Faculty of Forestry, University of Agriculture in Krakow, 31-425 Krakow, Poland
Piotr Wężyk: Department of Forest Resource Management, Faculty of Forestry, University of Agriculture in Krakow, 31-425 Krakow, Poland

Land, 2022, vol. 11, issue 6, 1-19

Abstract: Rapid urbanization is causing changes in green spaces and ecological connectivity. So far, urban ecosystem research has mainly focused on using landscape metrics (LM) in two-dimensional (2D) space. Our study proposes three-dimensional (3D) measures of urban forests (UF) and LM calculations using LiDAR technology. First, we estimated the UF volume of Krakow (Poland) and the distribution of vegetation (low, medium, high) using a voxel-based GEOBIA approach based on the ALS LiDAR point cloud, satellite imagery, and aerial orthophotos at specific timestamps: 2006, 2012, 2017. Then, the appropriate landscape metrics were selected (NP, AREA_MN, CONTIG_MN, LPI, PARA_MN, SPLIT, MESH, PD, DIVISION, LSI) to quantify the differences between the 2D- and 3D-derived vegetation structures and detect changes in the urban landscape. The results showed that areas with low vegetation decreased due to the expansion of built-up areas, while areas with medium and high vegetation increased in Krakow between 2006, 2012, and 2017. We have shown that the lack of information on the vertical features of vegetation, i.e., 2D greenery analysis, leads to an overestimation of landscape connectivity. In the 3D vegetation classes, it was observed that low vegetation was the best connected, followed by high vegetation, while medium vegetation was dispersed in the city space. These results are particularly relevant for the urban environment, where the distribution of green space is crucial for the provision of ecosystem services.

Keywords: landscape metrics; 3D monitoring; LiDAR; urban green spaces; urban forests volume; voxels; change detection (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/11/6/883/pdf (application/pdf)
https://www.mdpi.com/2073-445X/11/6/883/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:11:y:2022:i:6:p:883-:d:835635

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:883-:d:835635