EconPapers    
Economics at your fingertips  
 

Distribution and Structure Analysis of Mountain Permafrost Landscape in Orulgan Ridge (Northeast Siberia) Using Google Earth Engine

Moisei Zakharov, Sébastien Gadal, Jūratė Kamičaitytė, Mikhail Cherosov and Elena Troeva
Additional contact information
Moisei Zakharov: Aix Marseille Univ, Université Côte d’Azur, Avignon Université, CNRS, ESPACE, UMR 7300, 84000 Avignon, France
Sébastien Gadal: Aix Marseille Univ, Université Côte d’Azur, Avignon Université, CNRS, ESPACE, UMR 7300, 84000 Avignon, France
Jūratė Kamičaitytė: Faculty of Civil Engineering and Architecture, Kaunas University of Technology, 44249 Kaunas, Lithuania
Mikhail Cherosov: Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Science, 677980 Yakutsk, Russia
Elena Troeva: Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Science, 677980 Yakutsk, Russia

Land, 2022, vol. 11, issue 8, 1-21

Abstract: An analysis of the landscape spatial structure and diversity in the mountain ranges of Northeast Siberia is essential to assess how tundra and boreal landscapes may respond to climate change and anthropogenic impacts in the vast mountainous permafrost of the Arctic regions. In addition, a precise landscape map is required for knowledge-based territorial planning and management. In this article, we aimed to explore and enhanced methods to analyse and map the permafrost landscape in Orulgan Ridge. The Google Earth Engine cloud platform was used to generate vegetation cover maps based on multi-fusion classification of Sentinel 2 MSI and Landsat 8 OLI time series data. Phenological features based on the monthly median values of time series Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), and Normalized Difference Moisture Index (NDMI) were used to recognize geobotanical units according to the hierarchical concept of permafrost landscapes by the Support Vector Machine (SVM) classifier. In addition, geomorphological variables of megarelief (mountains and river valleys) were identified using the GIS-based terrain analysis and landform classification of the ASTER GDEM scenes mosaic. The resulting environmental variables made it possible to categorize nine classes of mountain permafrost landscapes. The result obtained was compared with previous permafrost landscape maps, which revealed a significant difference in distribution and spatial structure of intrazonal valleys and mountain tundra landscapes. Analysis of the landscape structure revealed a significant distribution of classes of mountain Larix -sparse forests and tundra. Landscape diversity was described by six longitudinal and latitudinal landscape hypsometric profiles. River valleys allow boreal–taiga landscapes to move up to high-mountainous regions. The features of the landscape structure and diversity of the ridge are noted, which, along with the specific spatial organization of vegetation and relief, can be of key importance for environmental monitoring and the study of regional variability of climatic changes.

Keywords: permafrost landscape; Google Earth Engine; Support Vector Machine; time-series image classification; terrain analysis; landscape structure; landscape mapping; Northeast Siberia (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/11/8/1187/pdf (application/pdf)
https://www.mdpi.com/2073-445X/11/8/1187/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:11:y:2022:i:8:p:1187-:d:875183

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1187-:d:875183