EconPapers    
Economics at your fingertips  
 

Weakening of Coastlines and Coastal Erosion in the Gulf of Guinea: The Case of the Kribi Coast in Cameroon

Philippes Mbevo Fendoung, Mesmin Tchindjang () and Aurélia Hubert-Ferrari
Additional contact information
Philippes Mbevo Fendoung: Department of Forest Engineering, Advanced Teachers’ Training College for Technical Education, University of Douala, Douala P.O. Box 1872, Cameroon
Mesmin Tchindjang: Department of Geography, Faculty of Arts, Letters and Social Sciences, University of Yaoundé 1, Yaoundé P.O. Box 30464, Cameroon
Aurélia Hubert-Ferrari: SPHERES Research Unit, Department of Geography, Faculty of Science, University of Liege-Belgium, Quarter Village 4, Clos Mercator 3, Building 11 B, 4000 Liege, Belgium

Land, 2022, vol. 11, issue 9, 1-35

Abstract: For more than four decades, the Gulf of Guinea’s coasts have been undergoing a significant phenomenon of erosion, resulting from the pressures of both anthropogenic and marine weather forcings. From the coasts of West Africa (Senegal, Ivory Coast, Ghana, Benin, Togo, and Nigeria) to those of Central Africa (Gabon, Equatorial Guinea, and Cameroon), the phenomenon has been growing for more than four decades. The southern Cameroonian coastline from Kribi to Campo has become the scene of significant environmental dynamics that render it vulnerable to coastal erosion, which appears to be the major hazard of this coastal territory and causes a gradual degradation of the vegetative cover, thereby leading to the degradation of the coast’s land/ground cover and human-made infrastructure. The objective of this work is to analyze the kinematics of the Kribian coastline between 1973 and 2020; to quantify the levels of retreat, accretion, and stability; and finally, to discuss the factors influencing the evolution of the coastline. The methodological approach is based on the large-scale processing of Landsat images with a spatial resolution of 30 m. Then, small-scale processing is carried out around the autonomous port of Kribi using Pléiades and Google Earth images from the years 2013, 2018, and 2020 with a 0.5 m spatial resolution. The Digital Shoreline Analysis System (DSAS) version 5 and ArcMap 10.5 ® tool are used to model coastal kinematics. In addition, the dynamics of the agro-industrial plantations are assessed via satellite images and landscape perception. Environmental degradation is measured with respect to the entire Cameroonian coastline through the supervised classification of Landsat images (1986–2020). The results show that erosion is in its initial phase in Kribi because significant retreats of the coastline are noticeable over the period from 2015–2020. Thus, between 1973 and 2020, the linear data present a certain stability. In total, +72.32% of the line remained stable, with values of +1.3% for accretion and +26.33% for erosion—obtained from Landsat images of 30 m resolution—with an average retreat of +1.3 m/year and an average accretion of 0.9 m/year between 1973–2020. Based on high-resolution images, between 2013 and 2019, the average retreat of the coastline on the Kribian coast was −8.5 m/year and the average accretion was about 7 m/year. Agro-industrial plantations are responsible for environmental degradation. Thus, at SOCAPALM in Apouh, there has been a clear growth in plantations, which has fallen from 53% in 1990 to 78% in 2020, i.e., an increase of 25% of its baseline area. This is linked to the fact that plantations are growing significantly, with increases of 16% in 1990, 28% in 2000, and 29% in 2020, for old plantations.

Keywords: coastal erosion; coastline; Gulf of Guinea; Kribi; fragilization (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/11/9/1557/pdf (application/pdf)
https://www.mdpi.com/2073-445X/11/9/1557/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:11:y:2022:i:9:p:1557-:d:913984

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1557-:d:913984