EconPapers    
Economics at your fingertips  
 

Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China

Ji Zhang, Shiqi Yang, Shengtian Yang, Li Fan and Xu Zhou ()
Additional contact information
Ji Zhang: Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
Shiqi Yang: Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
Shengtian Yang: School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China
Li Fan: Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
Xu Zhou: School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China

Land, 2023, vol. 12, issue 2, 1-15

Abstract: Water use efficiency (WUE) has garnered considerable attention at global and regional levels. However, spatio-temporal variations of WUE and related influencing factors in the complex karst landforms of southwest China require further elucidation. Herein, the ratio of gross primary productivity (GPP) to evapotranspiration (ET) obtained through the PML-V2 product was used to characterize ecosystem WUE, the spatio-temporal variations to ecosystem WUE, and responses to temperature, precipitation, and the enhanced vegetation index (EVI) in southwest China. The results showed that: (1) The ecosystem WUE in southwest China decreased with increasing latitude and altitude. Spatially, the ecosystem WUE fluctuates in a “W” pattern with increasing longitude because of the karst landforms’ distribution patterns. (2) The non-significant trend in increased ecosystem WUE during 2003–2017 may be associated with significant increases in the ET offsetting part of the GPP contribution to ecosystem WUE. Spatial distribution of changes in WUE is similar to GPP owing to the dominant role of GPP in changes to ecosystem WUE. (3) The multi-year average ecosystem WUE was lower in karst than in non-karst landforms; however, vegetation restoration projects have contributed in significantly increasing variation rate of ecosystem WUE in karst than that in non-karst landforms. (4) Temperature, precipitation, and EVI were generally positively correlated with ecosystem WUE and were important factors for the increase in ecosystem WUE. EVI characterized vegetation restoration indicators showed that the ecological engineering construction in the study area was effective and was the dominant factor of ecosystem WUE change in 59.59% of the study area. The results of this study are important for further understanding carbon and water cycling processes in karst regions.

Keywords: water use efficiency; southwest China; karst region; spatio-temporal variations; influencing factor (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2073-445X/12/2/397/pdf (application/pdf)
https://www.mdpi.com/2073-445X/12/2/397/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:12:y:2023:i:2:p:397-:d:1054581

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:397-:d:1054581