EconPapers    
Economics at your fingertips  
 

Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods

Esteban Bravo-López (), Tomás Fernández Del Castillo (), Chester Sellers and Jorge Delgado-García
Additional contact information
Esteban Bravo-López: Department of Cartographic, Geodetic and Photogrammetric Engineering, Photogrammetric and Topometric Systems Research Group, Centre for Advanced Studies in Earth Sciences, Energy and Environment, University of Jaen, 23071 Jaen, Spain
Tomás Fernández Del Castillo: Department of Cartographic, Geodetic and Photogrammetric Engineering, Photogrammetric and Topometric Systems Research Group, Centre for Advanced Studies in Earth Sciences, Energy and Environment, University of Jaen, 23071 Jaen, Spain
Chester Sellers: Instituto de Estudios de Régimen Seccional del Ecuador (IERSE), Vicerrectorado de Investigaciones, Universidad del Azuay, Cuenca 010204, Ecuador
Jorge Delgado-García: Department of Cartographic, Geodetic and Photogrammetric Engineering, Photogrammetric and Topometric Systems Research Group, Centre for Advanced Studies in Earth Sciences, Energy and Environment, University of Jaen, 23071 Jaen, Spain

Land, 2023, vol. 12, issue 6, 1-28

Abstract: Landslides are events that cause great impact in different parts of the world. Their destructive capacity generates loss of life and considerable economic damage. In this research, several Machine Learning (ML) methods were explored to select the most important conditioning factors, in order to evaluate the susceptibility to rotational landslides in a sector surrounding the city of Cuenca (Ecuador) and with them to elaborate landslide susceptibility maps (LSM) by means of ML. The methods implemented to analyze the importance of the conditioning factors checked for multicollinearity (correlation analysis and VIF), and, with an ML-based approach called feature selection, the most important factors were determined based on Classification and Regression Trees (CART), Feature Selection with Random Forests (FS RF), and Boruta and Recursive Feature Elimination (RFE) algorithms. LSMs were implemented with Random Forests (RF) and eXtreme Gradient Boosting (XGBoost) methods considering a landslide inventory updated to 2019 and 15 available conditioning factors (topographic (10), land cover (3), hydrological (1), and geological (1)), from which, based on the results of the aforementioned analyses, the six most important were chosen. The LSM were elaborated considering all available factors and the six most important ones, with the previously mentioned ML methods, and were compared with the result generated by an Artificial Neural Network with resilient backpropagation (ANN rprop-) with six conditioning factors. The results obtained were validated by means of AUC-ROC value and showed a good predictive capacity for all cases, highlighting those obtained with XGBoost, which, in addition to a high AUC value (>0.84), obtained a good degree of coincidence of landslides at high and very high susceptibility levels (>72%). Despite the findings of this research, it is necessary to study in depth the methods applied for the development of future research that will contribute to developing a preventive approach in the study area.

Keywords: Cuenca, Ecuador; machine learning; feature selection; random forests; extreme gradient boosting; landslides (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2073-445X/12/6/1135/pdf (application/pdf)
https://www.mdpi.com/2073-445X/12/6/1135/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:12:y:2023:i:6:p:1135-:d:1157547

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1135-:d:1157547