EconPapers    
Economics at your fingertips  
 

Nonlinear Flood Responses to Tide Level and Land Cover Changes in Small Watersheds

Huabing Huang (), Yu Pan, Changpeng Wang and Xianwei Wang
Additional contact information
Huabing Huang: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
Yu Pan: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
Changpeng Wang: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
Xianwei Wang: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China

Land, 2023, vol. 12, issue 9, 1-17

Abstract: Regarding global warming, the threat of flooding is projected to increase due to the change in intensity and frequency of single drivers and amplification caused by multi-driver interactions. This interaction becomes more complicated in developing regions with rapidly changing land cover. As a result, demands on flood risk management are rising especially in small watersheds, which are more vulnerable to driver disturbances compared with large watersheds. Existing studies focused on large watersheds rather than small watersheds. However, the findings derived from large-scale analysis cannot be transferred to small watersheds directly. This research investigated the flood responses in the Yonghe River Watershed (YRW) (63.8 km 2 ) in Guangzhou, China, considering the impact of land cover change. The YRW experienced a disastrous compound flood on 22 May 2020. A hydrodynamic model integrating the Hydrologic Engineering Center’s Hydrologic Modeling System and River Analysis System (HEC-HMS and HEC-RAS, respectively) was established and calibrated using the inundation depths observed during the flood. Model analysis using multiple scenarios showed that the watershed is river-dominated, and flood responses to the three factors are nonlinear but with different increasing rates. The response curves for tide levels and land cover changes increase faster at high values, whereas the rainfall intensity curves vary slightly. These findings highlight the importance of integrating tidal impacts into flood risk management, even in river-dominated coastal watersheds. The study further recommends that in small watersheds, 50% imperviousness is an indicator of the urgent demand for flood risk management measures.

Keywords: tidal impact; land cover threshold; HEC-HMS; HEC-RAS (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2073-445X/12/9/1743/pdf (application/pdf)
https://www.mdpi.com/2073-445X/12/9/1743/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:12:y:2023:i:9:p:1743-:d:1235429

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1743-:d:1235429