Dynamics of the Interaction between Freeze–Thaw Process and Surface Energy Budget on the Permafrost Region of the Qinghai-Tibet Plateau
Junjie Ma,
Ren Li (),
Tonghua Wu,
Hongchao Liu,
Xiaodong Wu,
Guojie Hu,
Wenhao Liu,
Shenning Wang,
Yao Xiao,
Shengfeng Tang,
Jianzong Shi and
Yongping Qiao
Additional contact information
Junjie Ma: School of Geographic Science and Tourism, Nanyang Normal University, Nanyang 473061, China
Ren Li: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Tonghua Wu: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Hongchao Liu: School of Geographic Science and Tourism, Nanyang Normal University, Nanyang 473061, China
Xiaodong Wu: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Guojie Hu: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Wenhao Liu: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Shenning Wang: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Yao Xiao: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Shengfeng Tang: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Jianzong Shi: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Yongping Qiao: Cryosphere Research Station on the Qinghai-Tibet Plateau, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Land, 2024, vol. 13, issue 10, 1-15
Abstract:
Exploring the complex relationship between the freeze–thaw cycle and the surface energy budget (SEB) is crucial for deepening our comprehension of climate change. Drawing upon extensive field monitoring data of the Qinghai-Tibet Plateau, this study examines how surface energy accumulation influences the thawing depth. Combined with Community Land Model 5.0 (CLM5.0), a sensitivity test was designed to explore the interplay between the freeze–thaw cycle and the SEB. It is found that the freeze–thaw cycle process significantly alters the distribution of surface energy fluxes, intensifying energy exchange between the surface and atmosphere during phase transitions. In particular, an increase of 65.6% is observed in the ground heat flux during the freezing phase, which subsequently influences the sensible and latent heat fluxes. However, it should be noted that CLM5.0 has limitations in capturing the minor changes in soil moisture content and thermal conductivity during localized freezing events, resulting in an imprecise representation of the complex freeze–thaw dynamics in cold regions. Nevertheless, these results offer valuable insights and suggestions for improving the parameterization schemes of land surface models, enhancing the accuracy and applicability of remote sensing applications and climate research.
Keywords: freeze–thaw process; surface energy budget; permafrost; climate change; Qinghai-Tibet Plateau (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/10/1609/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/10/1609/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:10:p:1609-:d:1491784
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().