EconPapers    
Economics at your fingertips  
 

Terrain Analysis According to Multiscale Surface Roughness in the Taklimakan Desert

Sebastiano Trevisani () and Peter L. Guth
Additional contact information
Sebastiano Trevisani: Dipartimento di Culture del Progetto, University Iuav of Venice, Terese-Dorsoduro 2206, 30123 Venice, Italy
Peter L. Guth: Department of Oceanography, US Naval Academy, Annapolis, MD 21402, USA

Land, 2024, vol. 13, issue 11, 1-23

Abstract: Surface roughness, interpreted in the wide sense of surface texture, is a generic term referring to a variety of aspects and scales of spatial variability of surfaces. The analysis of solid earth surface roughness is useful for understanding, characterizing, and monitoring geomorphic factors at multiple spatiotemporal scales. The different geomorphic features characterizing a landscape exhibit specific characteristics and scales of surface texture. The capability to selectively analyze specific roughness metrics at multiple spatial scales represents a key tool in geomorphometric analysis. This research presents a simplified geostatistical approach for the multiscale analysis of surface roughness, or of image texture in the case of images, that is highly informative and interpretable. The implemented approach is able to describe two main aspects of short-range surface roughness: omnidirectional roughness and roughness anisotropy. Adopting simple upscaling approaches, it is possible to perform a multiscale analysis of roughness. An overview of the information extraction potential of the approach is shown for the analysis of a portion of the Taklimakan desert (China) using a 30 m resolution DEM derived from the Copernicus Glo-30 DSM. The multiscale roughness indexes are used as input features for unsupervised and supervised learning tasks. The approach can be refined both from the perspective of the multiscale analysis as well as in relation to the surface roughness indexes considered. However, even in its present, simplified form, it can find direct applications in relation to multiple contexts and research topics.

Keywords: DEM; desert; geomorphometry; image texture; landscape; machine learning; morphology; multiscale; roughness; ruggedness (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/13/11/1843/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/11/1843/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:11:p:1843-:d:1514587

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1843-:d:1514587