High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 2: ECOCLIMAP-SG-ML an Ensemble Land Cover Map
Thomas Rieutord (),
Geoffrey Bessardon and
Emily Gleeson
Additional contact information
Thomas Rieutord: Met Éireann, 65/67 Glasnevin Hill, D09 Y921 Dublin, Ireland
Geoffrey Bessardon: Met Éireann, 65/67 Glasnevin Hill, D09 Y921 Dublin, Ireland
Emily Gleeson: Met Éireann, 65/67 Glasnevin Hill, D09 Y921 Dublin, Ireland
Land, 2024, vol. 13, issue 11, 1-19
Abstract:
While the surface of the Earth plays a key role in weather forecasting through its interaction with the atmosphere, in ensemble numerical weather predictions the uncertainty on the surface is only represented with perturbations in the parameterisations representing the surface processes. Data representing the surface, such as the land cover, are not perturbed. As fully data-driven forecasts without parameterisations are growing in importance, sampling the uncertainty on the land cover data brings a new way of making ensemble forecasts. Our work describes a method of generating ensemble land cover maps for numerical weather prediction. The target land cover map has the ECOCLIMAP-SG labels used in the SURFEX surface model and therefore is expected to have all relevant labels for surface-atmosphere interactions. The method translates the ESA WorldCover map to ECOCLIMAP-SG labels and resolution using auto-encoders. The land cover ensemble members are obtained by sampling the land cover probabilities in the output of the neural network. This paper builds upon the work done in a companion paper describing the high-resolution version of ECOCLIMAP-SG, called ECOCLIMAP-SG+, used for the training and evaluation of the neural network. The output map presented here, called ECOCLIMAP-SG-ML, improves upon the ECOCLIMAP-SG map in terms of resolution (from 300 m to 60 m), overall accuracy (from 0.41 to 0.63), and the ability to produce ensemble members.
Keywords: land cover land use; machine learning; meteorology (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/11/1875/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/11/1875/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:11:p:1875-:d:1517495
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().