A Parameter Optimized Method for InVEST Model in Sub-Pixel Scale Integrating Machine Learning Algorithm and Vegetation–Impervious Surface–Soil Model
Linlin Wu and
Fenglei Fan ()
Additional contact information
Linlin Wu: School of Geography, South China Normal University, Guangzhou 510631, China
Fenglei Fan: School of Geography, South China Normal University, Guangzhou 510631, China
Land, 2024, vol. 13, issue 11, 1-21
Abstract:
The InVEST model, with its ability to perform spatial visualization and quantification, is an important tool for mapping ecosystem services. However, the spatial accuracy and simulating performance of the model are deeply influenced by the land use parameter, which often relies on the accuracy of land use/cover data. To address this issue, we propose a novel method for optimizing the land use parameter of the InVEST model based on the vegetation–impervious surface–soil (V–I–S) model and a machine learning algorithm. The optimized model is called Sub-InVEST, and it improves the performance of assessing ecosystem services on a sub-pixel scale. The conceptual steps are (i) extracting the V–I–S fraction of remote sensing images based on the spectral unmixing method; (ii) determining the mapping relationship of the V–I–S fraction between land use/cover type using a machine learning algorithm and field observation data; (iii) inputting the V–I–S fraction into the original model instead of the land use/cover parameter of the InVEST model. To evaluate the performance and spatial accuracy of the Sub-InVEST model, we employed the habitat quality module of InVEST and multi-source remote sensing data, which were applied to acquire Sub-InVEST and estimate the habitat quality of central Guangzhou city from 2000 to 2020 with the help of the LSMA and ISODATA methods. The experimental results showed that the Sub-InVEST model is robust in assessing ecosystem services in sets of complex ground scenes. The spatial distribution of the habitat quality of both models revealed a consistent increasing trend from the southwest to the northeast. Meanwhile, linear regression analyses observed a robust correlation and consistent linear trends, with R 2 values of 0.41, 0.35, 0.42, 0.39, and 0.47 for the years 2000, 2005, 2010, 2015, and 2020, respectively. Compared with the original model, Sub-InVEST had a more favorable performance in estimating habitat quality in central Guangzhou. The spatial depictions and numerical distribution of the results of the Sub-InVSET model manifest greater detail and better concordance with remote sensing imagery and show a more seamless density curve and a substantially enhanced probability distribution across interval ranges.
Keywords: InVEST; V–I–S model; land use/cover; spectral unmixing; remote sensing (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/11/1876/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/11/1876/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:11:p:1876-:d:1517735
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().