Complex Methodology for Spatial Documentation of Geomorphological Changes and Geohazards in the Alpine Environment
Ľudovít Kovanič (),
Patrik Peťovský,
Branislav Topitzer and
Peter Blišťan
Additional contact information
Ľudovít Kovanič: Institute of Geodesy, Cartography and Geographical Information Systems, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Kosice, Park Komenského 19, 04001 Košice, Slovakia
Patrik Peťovský: Institute of Geodesy, Cartography and Geographical Information Systems, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Kosice, Park Komenského 19, 04001 Košice, Slovakia
Branislav Topitzer: Institute of Geodesy, Cartography and Geographical Information Systems, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Kosice, Park Komenského 19, 04001 Košice, Slovakia
Peter Blišťan: Institute of Geodesy, Cartography and Geographical Information Systems, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Kosice, Park Komenského 19, 04001 Košice, Slovakia
Land, 2024, vol. 13, issue 1, 1-31
Abstract:
The alpine environment with a high degree of nature protection is characterized by complete non-intervention. The processes and phenomena occurring in it are exclusively of a natural origin. Related geohazards are threatening the safety of people’s movement. They arise as a result of a combination of meteorological, hydrological, and geological–morphological factors permanently operating in the country. Therefore, the prevention of fatal events is limited to monitoring and predicting changes in selected objects where we expect change. Changes in the shape and dimension, or the object’s deformation, can be documented using geodetic and photogrammetric measurements. Our research focuses on monitoring a rock talus cone in High Tatras, Slovakia, at an altitude of 1700 m above sea level (ASL), created mainly due to erosion and seasonal torrential rains. To monitor changes in selected objects, we used mass non-contact methods of terrestrial laser scanning (TLS), UAS photogrammetry based on the principle of structure-from-motion–multi-view stereo (SfM–MVS), and airborne laser scanning (ALS). From the selective measurement methods, spatial measurement by a total station (TS) and height measurement based on the principle of precise leveling were used in the monitoring deformation network on a stand-alone boulder. The research results so far analyze and evaluate the possibilities, limits, effectiveness, and accuracy of the measurement and data processing methods used. As a result, we propose a complex methodology for monitoring similar phenomena in alpine environments.
Keywords: UAS; SfM photogrammetry; TLS; ALS; landslide; rockfall; geohazards; point cloud; geodetic network; High Tatras; shifts monitoring; stage measurement (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/1/112/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/1/112/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:1:p:112-:d:1322836
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().