Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China
Yuxin Qi and
Yuandong Hu ()
Additional contact information
Yuxin Qi: College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
Yuandong Hu: College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
Land, 2024, vol. 13, issue 1, 1-21
Abstract:
Biodiversity is profoundly influenced by habitat quality, and Harbin, a provincial capital situated in a cold climate zone, stands out as one of China’s regions most susceptible to the repercussions of climate change. To ensure the city’s continued sustainable growth, a thorough assessment of habitat quality must be conducted. This study employs a comprehensive approach integrating the InVEST model, the PLUS model, a landscape pattern analysis, geographic detector, and a geographically weighted regression model. The goal is to assess how land use and habitat quality have changed in Harbin City, investigate factors contributing to spatial heterogeneity in habitat quality, thoroughly examine evolutionary patterns under the inertial development scenario from 2030 to 2050, and propose spatial optimization strategies. There are four key findings. First, from 2000 to 2020, agricultural land and forest were Harbin City’s two most prevalent land use types. The most notable transition occurred from forest to grassland, and the expansion of construction land primarily resulted from its encroachment into agricultural areas. Second, within the area of study, the landscape heterogeneity increased while simultaneously experiencing a decrease in connectivity, and the landscape had a tendency toward a more fragmented spatial distribution. Third, overall habitat quality rose between 2000 and 2020 but declined between 2030 and 2050. There was a “weak in the west and high in the east” distribution pattern in the spatial heterogeneity of habitat quality. Fourth, population density has the most impact on habitat quality, with the NDVI and GDP close behind. Conversely, precipitation and slope had comparatively smaller influences on habitat quality. Natural factors combined had a primarily favorable influence on habitat quality across the research region in terms of spatial distribution. Conversely, population density had a discernibly detrimental impact. Given these findings, this study suggests targeted strategies to optimize habitat quality. These recommendations are relevant not only for biodiversity conservation but also for the development of an ecologically sustainable community, particularly in a cold climate region.
Keywords: habitat quality; landscape pattern; InVEST model; PLUS model; geographic detector; geographically weighted regression (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/1/67/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/1/67/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:1:p:67-:d:1314295
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().