EconPapers    
Economics at your fingertips  
 

Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai

Di Xu (), Chuanqing Yu, Wenpeng Lin (), Jiang Yao and Wenying Zhou
Additional contact information
Di Xu: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
Chuanqing Yu: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
Wenpeng Lin: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
Jiang Yao: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
Wenying Zhou: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

Land, 2024, vol. 13, issue 3, 1-19

Abstract: Soil organic carbon (SOC) constitutes a critical component of carbon reservoirs within terrestrial ecosystems. The ramifications of urban land use transitions on SOC dynamics, particularly in rapidly urbanizing regions such as Shanghai, remain insufficiently elucidated. This investigation synergizes a predictive land use change model (Logistic-CA-Markov) with an ecosystem service quantification framework (InVEST), aiming to delineate the interplay between SOC variability and Land Use and Land Cover Change (LUCC) under natural development and ecological protection scenarios. Empirical observations from 2010 to 2020 reveal a contraction in Shanghai’s agricultural land of 34,912.76 hectares, juxtaposed with an expansion of urban built-up areas of 36,048.24 hectares. Projections for 2030 under an ecological protection scenario indicate a moderated urban sprawl, reducing built-up area expansion by 13,518 hectares relative to the natural development scenario. Notably, the net carbon sequestration capacity of Shanghai is anticipated to diminish by approximately 0.418 million tons between 2020 and 2030. This trend is observed under both considered scenarios, forecasting a cumulative reduction in SOC stocks exceeding 1 million tons by 2030. The natural development pathway portends a more pronounced and accelerated depletion of SOC reserves. Although ecological conservation measures show the potential to decelerate this loss, they appear insufficient to reverse the ongoing decline in SOC stocks. This study advocates for strategic urban planning interventions focused on constraining the growth of building densities and augmenting the preservation and management of eco-lands. Such measures are imperative for bolstering Shanghai’s carbon sequestration capacity.

Keywords: LUCC; Logistic-CA-Markov; InVEST; carbon storage (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2073-445X/13/3/267/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/3/267/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:3:p:267-:d:1342583

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:267-:d:1342583